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Abstract

I consider a final-offer arbitration model in which the offers are submitted sequen-

tially, the parties are allowed to accept offers, and the arbitrator maximizes Nash’s

social welfare function. I show that backwards induction in this three-period model

leads to the subgame-perfect equilibrium outcome of Rubinstein’s infinite-horizon

alternating-offer bargaining game.
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1 Introduction

Bargaining theory has two pillars: Nash’s axiomatic bargaining solution, and Rubinstein’s

solution to the infinite-horizon bargaining with alternating offers. Nash (1950) has shown

that if one wants to satisfy certain assumptions, then he must maximize the multiplication

of the payoffs, which will be called the Nash’s social welfare function hereafter. Rubinstein

(1982) has shown that an infinite-horizon bargaining game with alternating offers has a unique

subgame-perfect equilibrium. The two solutions are close when the discount rate is close to 1

(Binmore, Rubinstein, and Wolinsky (1987)), but they are distinct in general.

On the other hand, in formal negotiations, some alternative dispute resolution mechanisms

are used if the parties do not reach an agreement before a certain deadline. An important

mechanism is final-offer arbitration, introduced by Stevens (1966), in which the arbitrator

has to choose between the offers submitted by the parties. In the United States, final-offer

arbitration is frequently used to resolve interest disputes in public-sector employment and to

determine the salaries of professional baseball players.

It turns out that these three important pieces in dispute resolution share an interesting

story. If the arbitrator maximizes Nash’s social-welfare function in the final-offer arbitration,

then the unique subgame-perfect equilibrium outcome of arbitration is precisely the unique

subgame-perfect equilibrium outcome in Rubinstein’s infinite-horizon bargaining game with

alternating offers. The equivalence remains intact when there are negotiations before the

arbitration.

In formal negotiations, the parties often impose a deadline. When the deadline is short,

however, the mechanism used at the deadline usually has a large impact on the outcome of the

negotiation in equilibrium, introducing a bias in favor of one party. The result above points out

a way to impose a deadline without affecting the bargaining outcome, regardless of how short

the deadline is. It is using final-offer arbitration with an arbitrator who maximizes Nash’s

social-welfare function.

A more theoretical contribution of this paper to the bargaining theory is that the equi-

librium dynamics of the model developed here does not resemble to the dynamics in usual

bargaining models. As the paper demonstrates, unlike in the usual models, the actions of

players have great impact on the equilibrium behavior of future players, and that is why the

outcome of two-period negotiation here is the same as the outcome of the infinite-period ne-

gotiation in usual setup.
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2 Final-Offer Arbitration with Sequential Offers

There are two negotiators, namely 1 and 2, and an arbitrator. Negotiators are to jointly choose

a pair (x, y) from a convex, compact set X, where X ⊂ R2+ is understood to be the set of all
feasible expected utility pairs for the negotiators after normalizing the disagreement payoffs to

(0, 0) ∈ X. There are three dates t ∈ {0, 1, 2}. At date t = 0, Negotiator 1 submits an offer
(x0, y0) ∈ X to the arbitrator. The offer is observable to Negotiator 2, who decides whether to

accept the offer, ending the game with (x0, y0), or wait and submit her own offer (x1, y1) ∈ X

to the arbitrator at t = 1. Again, at t = 1, the offer (x1, y1) is observable, and Negotiator

1 decides whether to accept. If he accepts the offer, (x1, y1) is chosen and the game ends.

Otherwise, the arbitrator makes the decision at t = 2, by choosing

(x2, y2) ∈ {(x0, y0) , (x1, y1)} .

(In final-offer arbitration, the arbitrator has to choose one of the submitted offers.) If (x, y)

is chosen at t, then the payoffs of negotiators 1 and 2 are δtx and δty, respectively. The

arbitrator’s utility function at t = 2 is Nash’s (1950) social welfare function:

uA (x, y) = xy.

The arbitrator’s time preferences need not be specified because he moves only once. This

perfect-information game is referred to as sequential final-offer arbitration model.

I make the following standard assumption: the function

f : x 7→ max {y| (x, y) ∈ X}

is concave, continuous, strictly decreasing; f (0) > 0 , and f (x̄) = 0 for some x̄.

There are two crucial modeling assumptions. First, the parties are allowed to accept the

offers before the arbitrator makes a decision. This assumption commonly holds in real life. In

fact, in the Major Baseball League, in 80% of the cases that are submitted to an arbitrator,

the parties settle before the arbitrator makes a decision, which takes a month (see for example

Wilson (1994)). Second, the offers are made sequentially. This assumption is sometimes natural

because the party who files a case with an arbitrator has an incentive to submit his offer with

the application and let the other party know what the offer is.

3 Transferable-Utility Case

In order to illustrate the main idea, consider the transferable utility case, in which X =

{(x, y) |x+ y = 1}. Here, I exclude the Pareto-inferior payoffs for clarity. At the last period,
maximizing Nash’s social welfare function, the arbitrator chooses the offer that is closer to
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(1/2, 1/2). Now suppose that Negotiator 2 offers (x1, y1) such that x1 is closer to 1/2 than

x0 is. Negotiator 1 would not reject such an offer because the arbitrator would select (x1, y1)

in the next period anyway. If x0 is closer to 1/2, then he accepts (x1, y1) if x1 ≥ δx0, as

(x0, y0) would be selected next day if he rejects the offer. Therefore, in equilibrium, Negotiator

2 counteroffers (x∗1 (x0) , 1− x∗1 (x0)) with

x∗1 (x0) = min {δx0, 1− x0} . (1)

Notice that x∗1 (x0) is maximized at x
∗
0 = 1/ (1 + δ), which is the equilibrium offer in Rubin-

stein’s model. In the first period, if Negotiator 1 offers x∗0, then the other negotiator would

accept that offer because she is indifferent between paying x∗0 in the first period and paying

x∗1 (x
∗
0) = δ/ (1 + δ) in the next period. If he asks a higher payoff x0 > x∗0, she rejects it be-

cause such a high demand x0 allows her to counteroffer a low payoff x∗1 (x0) in the next period,

enticing her to wait. Indeed,

1− x0 < δ/ (1 + δ) < δx0 = δ (1− x∗1 (x0)) ,

showing that accepting x0 at t = 0, which yields 1 − x0, is worse than couteroffering x∗1 (x0)

at t = 1, which yields δ (1− x∗1 (x0)). But since the counteroffer depends on the initial offer,

Negotiator 1 may still prefer to offer such x0 if it leads to a better counteroffer x∗1 (x0). It turns

out that this is not the case: δx∗1 (x0) < δ/ (1 + δ) < x∗0. Could he get a higher payoff than x∗0

by offering x0 < x∗0 and receiving a better counteroffer x
∗
1 (x0)? The answer, again, turns out

to be negative because x∗1 (x0) is increasing in that region. Therefore, he offers x
∗
0 = 1/ (1 + δ)

in the first period, and the offer is accepted–as in Rubinstein’s infinite-horizon model.

The dynamics of the counteroffers here does not resemble to the dynamics in usual bar-

gaining models. In usual bargaining, the past actions do not have any impact on the future

behavior. When Negotiator 1 makes his offer, he takes the future counteroffers and the other

negotiator’s acceptance threshold given. On the other hand, in the sequential final-offer ar-

bitration model, the past actions do affect the future equilibrium actions. The arbitrator’s

decision depends on the two offers, and the counteroffer depends on the initial offer. Now

Negotiator 1 tries to affect the counteroffer and possibly the arbitrator’s choice by his offer. In

doing so, he ends up offering what he would have offered in infinite-horizon bargaining model

of Rubinstein. Two main forces lead him to make such an offer. First, a higher optimal coun-

teroffer x∗1 (x0) makes Negotiator 2 more willing to accept x0. Second, the optimal counteroffer,

x∗1 (x0) = min {δx0, 1− x0}, is maximized at the equilibrium offer in Rubinstein’s model.

4 Preliminaries

This section describes the subgame-perfect equilibrium (henceforth SPE) in Rubinstein’s model

and the indifference curves of Nash’s social welfare function.
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Figure 1: Rubinstein’s solution (on left) and the indifference curves of Nash’s social welfare

function (on right)

Rubinstein’s solution There is a unique SPE in Rubinstein’s (1982) infinite-horizon, alternating-

offer bargaining model. According to the SPE, Negotiator 1 offers a pair
¡
xR, yR

¢
with

yR = f
¡
xR
¢
, and Negotiator 2 accepts it. Rubinstein’s solution is illustrated on the left

panel of Figure 1. Fixing the payoffs of Negotiator 1, scale down the payoffs of Negotiator 2

by δ, obtaining a curve that is defined by y = δf (x). Now fixing the payoffs of Negotiator

2, scale down the payoffs of Negotiator 1, obtaining another curve, defined by x = δf−1 (y).

The unique intersection of these curves is
¡
δxR, δf

¡
δxR

¢¢
, which is of course defined by the

equation

f
¡
xR
¢
= δf

¡
δxR

¢
. (2)

Indifference Curves of Nash’s Social Welfare Function For any (x0, y0), the indif-

ference curve {(x, y) |xy = x0y0} that contains (x0, y0) is plotted on the right-hand panel
of Figure 1. If (x0, y0) is the Nash bargaining solution, then the indifference curve is tan-

gent to the Pareto frontier, with a unique intersection at (x0, y0). Otherwise, the indiffer-

ence curve intersects the Pareto frontier twice. Let the best intersection for Negotiator 2 be

γ (x0, y0) ≡ (g (x0, y0) , f (g (x0, y0))). Note that g (x0, y0) is the smaller of the two solutions to
the equation

g (x0, y0) f (g (x0, y0)) = x0y0. (3)

The indifference curves of Nash’s social welfare function and the Rubinstein’s solution xR

have a special relation. As seen in Figure 1, the offer
¡
xR, f

¡
xR
¢¢
of Negotiator 1 and the
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offer
¡
δxR, f

¡
δxR

¢¢
of Negotiator 2 are on the same indifference curve. Indeed, multiplying

both sides of (2) by xR, one obtains

xRf
¡
xR
¢
= δxRf

¡
δxR

¢
.

Since δxR < xR, this yields

g
¡
xR, f

¡
xR
¢¢
= δxR. (4)

This equality is another way to define xR, as it has a unique solution, and it will be the crucial

step in the proof of the main result.

5 Main Result

Proposition 1 The outcome of the unique subgame-perfect equilibrium of the sequential final-

offer arbitration model is the same as the outcome of the unique subgame-perfect equilibrium

of Rubinstein’s alternating-offer bargaining model: Negotiator 1 offers

(x0, y0) =
¡
xR, f

¡
xR
¢¢
,

and Negotiator 2 accepts the offer.

Proof. I will now apply backward induction, by breaking the ties towards an equilibrium.

At t = 2, given (x0, y0) and (x1, y1), the arbitrator will choose

(x2, y2) =

(
(x1, y1) if x1y1 ≥ x0y0

(x0, y0) otherwise.

(Since Negotiator 2 moves second, in equilibrium, arbitrator chooses (x1, y1) in case of indif-

ference.)

Now consider a t = 1 history in which Negotiator 2 offers (x1, y1) after rejecting (x0, y0).

Suppose that x1y1 ≥ x0y0. Then, Negotiator 1 foresees that if he rejects the offer (x1, y1), in

the next period, the arbitrator will choose the same decision (x1, y1). That is clearly worse

than accepting the offer at t = 1. Therefore, Negotiator 1 accepts the offer. Now suppose

that x1y1 < x0y0. Then, rejection leads to implementing (x0, y0) at t = 2 with payoff δ2x0

to Negotiator 1, while acceptance leads to implementing (x1, y1) at t = 1 with payoff δx1 to

Negotiator 1. Hence, Negotiator 1 will accept the offer if and only if

x1 ≥ δx0.

Now consider the node at which Negotiator 2 is to make an offer after rejecting (x0, y0). It

is not a best reply for Negotiator 2 to make an offer that will be rejected: as we have just seen,
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such an offer will lead to the choice of (x0, y0) at t = 2, while he can get γ (x0, y0) accepted at

t = 1, leading to a higher payoff. Therefore, Negotiator 2 offers (x∗1 (x0, y0) , y
∗
1 (x0, y0)) where

x∗1 (x0, y0) = min {g (x0, y0) , δx0} (5)

and

y∗1 (x0, y0) = f (x∗1 (x0, y0)) . (6)

Now consider t = 0. I will show that Negotiator 1 will offer
¡
xR, f

¡
xR
¢¢
, and the offer will

be accepted, as desired. The proof consists of three steps.

Step 1 : If Negotiator 1 offers
¡
xR, f

¡
xR
¢¢
, it is accepted, yielding the payoff of xR for

Negotiator 1.

Proof of Step 1 : By (4), x∗1
¡
xR, f

¡
xR
¢¢
= δxR and hence y∗1 (x0, y0) = f

¡
δxR

¢
. That is, if

the offer
¡
xR, f

¡
xR
¢¢
is rejected, then

¡
δxR, f

¡
δxR

¢¢
will be implemented at t = 1–precisely

as in the SPE of Rubinstein’s model. As in that model, Negotiator 2 is indifferent between

accepting and rejecting the offer, and he accepts in equilibrium.

Step 2 : Any offer (x0, y0) with x0 > xR is rejected and leads to a payoff strictly less than

xR for Negotiator 1.

Proof of Step 2 : Note that (x0, y0) is in a lower indifference curve. Hence,

g (x0, y0) < g
¡
xR, f

¡
xR
¢¢
= δxR < δx0, (7)

where the equality is by (4). Hence, by (5) and (6),

x∗1 (x0, y0) = g (x0, y0) (8)

and

y∗1 (x0, y0) = f (g (x0, y0)) > f
¡
δxR

¢
, (9)

where the inequality follows from (7) and the fact that f is strictly decreasing. Therefore,

δy∗1 (x0, y0) > δf
¡
δxR

¢
= f

¡
xR
¢
> f (x0) ≥ y0,

where the equality is by (2), the next inequality is by the fact that f is strictly decreasing,

and the last inequality is by definition of f . Since Negotiator 2 gets y0 from acceptance and

δy∗1 (x0, y0) from rejection, she rejects the offer (x0, y0), as claimed. To see the second part of

the claim, note that, by (5) and (7), the continuation payoff for Negotiator 1 after such an

offer is

δx∗1 (x0, y0) = δg (x0, y0) < δ2xR.

Step 3 : Any offer (x0, y0) with x0 < xR leads to a payoff strictly less than xR for Negotiator

1.
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Proof of Step 3 : If (x0, y0) is accepted, the payoff is x0 < xR. If (x0, y0) is rejected, then

the continuation payoff, by (5), is

δx∗1 (x0, y0) ≤ δ2x0 < xR,

proving the claim.

Step 1 shows that the continuation value of offering
¡
xR, f

¡
xR
¢¢
is xR, which is strictly

higher than the continuation value from any other offer, as established by Steps 2 and 3.

Therefore, at t = 0, Negotiator 1 offers
¡
xR, f

¡
xR
¢¢
, and it is accepted by Step 1.

Proposition 1 establishes that in a model of final-offer arbitration in which the parties

are allowed to accept the other parties’ offers the subgame-perfect equilibrium outcome is the

same as the one in Rubinstein’s infinite-horizon bargaining model. As we will see later, this

equivalence remains intact when the parties are allowed to negotiate before the arbitration.

It is crucial for Proposition 1 that the offers are made sequentially. If the parties submit the

offers simultaneously, as in the existing literature, the result is different. In that case, both

parties offer the arbitrator’s ideal payoff, which is the Nash’s bargaining solution in our case

(Crawford, 1979).

A basic intuition can be gleaned from the optimal counteroffer

x∗1 (x0, f (x0)) = min {g (x0, f (x0)) , δx0}

to a Pareto optimal offer (x0, f (x0)), where the share of Negotiator 2 is f (x∗1). In choosing x0,

Negotiator 1 has an incentive to maximize the counteroffer x∗1 because Negotiator 2 is more

willing to accept offers when x∗1 is higher (and f (x∗1) is lower). Clearly, as shown in Figure

2, δx0 is increasing in x0 and g (x0, f (x0)) is decreasing in x0. Therefore, x∗1 (x0, f (x0)) is

maximized at x0 with

g (x0, f (x0)) = δx0.

This is precisely the equation (4) that defines the Rubinstein’s offer xR. The equality is quite

intuitive. If Negotiator 1 makes a greedy offer at t = 0, then Negotiator 2 would counter it

with a slightly more equitable offer, which leads to a slightly higher social welfare according

to Nash. (The counteroffer is accepted because it would have been selected by the arbitrator

anyway.) On the other hand, if Negotiator 1 makes a less greedy offer and Negotiator 2 happens

to reject it, then Negotiator 2’s counteroffer would simply extract the gain from implementing

the original offer at t = 2 rather than a period later. The equation equalizes these two

incentives, which is also the property of Rubinstein’s solution under equal discount rates.

6 Negotiation before Arbitration

I now introduce more rounds of alternating-offer negotiation prior to arbitration. If the par-

ties are to go to arbitration exogenously at some given date T and if the arbitrator chooses
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g(x0,f(x0))

δ x0

x1*(x0,f(x0))

x0

Figure 2: The payoff x∗1 of player 1 counteroffered by player 2, as a function of the initial offer

x0 of player 1.

between the last two offers in the negotiation, then the SPE outcome will be precisely as in

the Rubinstein’s infinite-horizon model. This is simply because at round T − 2 the outcome
will be as in the Rubinstein’s infinite-horizon model, and this leads to the Rubinstein’s SPE

actions in the earlier rounds by the fixed-point property of the alternating-offer bargaining.

Here, I will consider a more interesting model of endogenous arbitration instead.1

Endogenous Final-Offer Arbitration Model Suppose that the possible dates are all

natural numbers {0, 1, 2, . . .}. Negotiators 1 and 2 negotiate. At each t, one of the negotiators–
Negotiator 1 at even dates and Negotiator 2 at odd dates–makes and offer, and the other

negotiator decides whether to

• accept the offer, ending the game, or

• reject it and file for an arbitration in the next period, or

• reject it and remain in the negotiation.

In the arbitration, the party who files the case submits an offer to the arbitrator. The

other party either accepts it or submits a counteroffer to the arbitrator (rejecting the former

offer). The party who files the case, may accept the counteroffer or rejects it, in which case

the arbitrator selects between the two offers and the game ends. The payoffs and the set X

are as before.

Note that the only difference between filing a case and remaining in the negotiation is

that in the latter case the party also triggers an arbitration procedure with his offer, ending
1This extension came out of a discussion with Alp Simsek.
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the game after two more periods. Moreover, as in the usual bargaining models with outside

options, only the responder has an option to file a case, presumably the proposer could not file

a case when he has an offer that is not rejected yet.

The main result extends to this case intact:

Proposition 2 The unique subgame-perfect equilibrium outcome of the endogenous final-offer

arbitration model is the same as the unique subgame-perfect equilibrium outcome of Rubinstein’s

infinite-horizon alternating-offer bargaining model: Negotiator 1 offers

(x0, y0) =
¡
xR, f

¡
xR
¢¢
,

and Negotiator 2 accepts the offer.

Proof. Since we can take the arbitration procedure as the outside option of the responder,

the result follows from the result of Binmore, Shaked and Sutton (1989). Now, by Proposition

1, the value of going into final-offer arbitration, which is the responder’s outside option, is

precisely the same as remaining in the negotiation. Therefore, the unique subgame-perfect

equilibrium outcome is the same as the one in Rubinstein’s model with no outside option.
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