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i. Introduction

Nonparametric regression in econometric applications provides a way of
uncovering the reduced form relationship between a dependent variable and
explanatory variables, without imposing functional form restrictions. 1In
particular, nonparametric conditional expectation estimation, which is a well
developed topic in the statistics literature, can be used to estimate how the
mean of a dependent variable depends on explanatory variables. Recent
econometric applications include Deaton (1988) and Pagan and Hong (1990).

In econometrics, there are many occasions where knowledge of the
structural relationship among dependent variables is required to answer
questions of interest. The purpose of this paper is to develop methods of
estimation for nonparametric structural models. As illustrated below, these
methods should prove useful in applications such as nonparametric estimation
of supply and demand models, marginal rates of substitution in consumption
based asset pricing models, and nonparametric regression with
errors—-in-variables.

The importance of structural estimation is familiar from the literature
on econometric policy analysis (e.g. Lucas (1976)), but a nonparametric
illustration may help drive the point home. Consider a classical supply and
demand example, where the price P and quantity traded Q in some market are

assumed to simultaneously solve

(1.1) P

gD(Q, Y) +U (inverse demand),

(1.2) Q

gS(P, W) +V (supply).

Here Y and W are exogenous forcing variables (e.g. income and weather
respectively), while U and V are unobservable shocks to the supply and

demand equations. Suppose a sales tax T is to be imposed, and it is desired
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to estimate the expected revenue from this tax. Let
{(Pt, Qt’ Yt’ Wt), t=1, ..., nt bea sample of observations on this market
with T =0. If nonparametric estimates éD(Q,Y) and éS(P,W) of the supply

and demand equations were available, then the expected revenue,

E[R(T)] = Elt-Q(z)], could be estimated by

(1.3) R(x) = L2700 (1)/m,

where 6t(r) is defined as the solution to

(1.4) Q, (v) = gs((l—t)-(gD(Qt(t),Yt)+Ut), W) + Y

and Gt and Vt are calculated from relations (1.1) and (1.2) with
estimated supply and demand functions replacing true. This estimator 1is not
feasible using only the reduced form regression functions E[Q | W, Y] and
E[P | W, YI.

In linear models, zero covariance between instruments and disturbances,
along with jdentification, suffices for consistent estimatlon. In a
nonparametric setting, a stronger restriction that the disturbance has
conditional mean zero given instruments 1s important; a finite number of zero
covariance restrictions will not suffice to jdentify an infinite dimensional
function. One object of the present paper is to investigate whether
identification with such restrictions permits consistent nonparametric
estimation of structural relations. As will be shown below, it does not.

The moment restrictions imply that the structural relations solve a particular
set of integral equations involving conditional distributions and expectations
of observable variables; however, these integral equations are not

well-behaved when the true conditional distributions and expectations are

replaced by estimates, which complicates the consistency arguments. To obtain



consistent estimates, then, we impose further restrictions on the structural
relations which, while nonparametric, are stronger than the usual "smoothness"
requirements imposed for consistency of nonparametric regression estimators.

We also investigate the extent to which this problem can be circumvented
via strengthening the assumptions, by considering a triangular model with
independent disturbances and a reduced form for right-hand side endogenous
variables that is linear in disturbances. A residual adjusted, additive
nonparametric regression estimator is suggested for this model. The
consistency of this estimator will not require the smoothness conditions
alluded to above.

Unfortunately, the assumptions of the triangular model may be too strong
for some important applications. Thus, it would also be of interest to
investigate intermediate cases, such as a model with independent disturbances
but no restriction on the reduced form. This investigation is currently

underway, but as yet there are few results to report.

2. The Conditional Mean Model

The first model we consider takes the form

(2.1) E[p(z,eo)lx] =0

where z denotes a data point, @ denotes a vector of functions, p(z,8) a
residual vector, and x a vector of instruments. The difference between this
model and familiar moment restriction models is that © can be infinite
dimensional, i.e. be a function rather than a vector of real numbers.

To motivate the results and provide useful illustrations it is helpful




to consider a number of examples. The first is a single equation with

endogenous right-hand side variables, taking the the form

(2.2) y = 90(22) + g, Elelx] = 0.

This model is a special case of that of equation (2.1) with z = (y,z.,,x) and

20
plz,0) = y—e(zz). For instance, if equation (2.2) is interpreted as either
the supply or demand equation, the nonparametric supply and demand model has
this form if the disturbances have conditional mean zero given Y and W. In
that case, x = (Y,W).

Another example is a nonparametric version of the consumption
asset-pricing model considered, for example, by Hansen and Singleton (1982).
For this case let C and C+ denote current and next period consumption, and

R and R+ current and next period asset returns. Also, let 9(C,C+)
denote the intertemporal marginal rate of substitution between the current and

next periods. The first order conditions for expected utility maximization

include

(2.3) E[GO(C,C+)R+IR,C] = 1.

This equation is a special case of equation (2.1) where z = (C,C+,R,R+), X =
(R,C), and p(z,0) = 6(C,C+)R+ - 1. Note that here the unknown function is
the marginal rate of substitution. Conditions for its nonparametric
identification and estimation will be discussed below.

A third example can be used to illustrate the importance of allowing
p(z,8) to be a vector. Consider a nonparametric errors-in-variables model of

the form



»*
(2.4) y = 910(w ) + &, E[ZIx,v] = 0,
»*
w=w +m, Elnlx,v,&] = 0,
*
W =X+V, v independent of x with density ezo(v),

where w, & m, and v are unobserved, but y, W, and x are observed.
Here w* represents an unobserved regressor, W a measurement of w*.

and x a causal variable for w*. Note that in practice x may depend on
unknown parameters; the case with known x 1s considered here for simplicity.

As discussed in Hausman, Ichimursa, Newey, and Powell (1985), a fundamental

implication of this model is

(2.5) E[w£-1y|x] = j‘[x+v]e_1910(x+v)ezo(v)dv, L=1,2.

This equation has the form of (2.1) for z = (y,w,x), 8= (91,92), and
p(2,6) = (p,(2,8),p,(2,0))" with py(z,6) = Wy -
I[x+v]e-1910(x+v)920(v)dv, (2 = 1,2). Both conditional moment restrictions
appear to be important for identification of ©; there are two functions to
be estimated, suggesting an "order condition" that at least two conditional
moment restrictions are present. Indeed, lack of identificatlon of 61 and
92 with only one moment restriction is shown in Hausman et. al. (1985). This

model is further considered in Hausman, Newey, and Powell (1989).



3. Identification

In the general model of equation (2.1) the fundamental necessary

identification condition for the existence of a consistent estimator is

Assumption 3.1: For © € 8, E[p(z,0)|x] = 0 implies o = 8g-

This identification condition is nonparametric, in the sense that 6 is
allowed to vary in an infinite dimensional set. For identification it is
essential that x not be constant, i.e. that the moment conditions not reduce
to unconditional restrictions. In general a finite number of unconditional
moment conditions will not identify an infinite-dimensional function. More
generally, it is important that there be enough variation in x relative the
variation in the argument of the function 6.

When p(z,08) 1is linear in O, it is possible to be more specific about
conditions for identification. Consider the single equation model of equation

(2.2). The conditional moment restriction E[e|x] = 0 is equivalent to

(3.1) n(x) = Ely|x] = E[GO(ZZ)Ix] = Ieo(zz)f(zzlx)dzz,

where f(zzlx) denotes the conditional density of z, given x. The
function w(x) 1is the nonparametric generalization of the reduced form for

y; note y = n(x) + v, with E[v|x] = 0. It is known that, under weak
regularity conditions, conditional expectations and densities can be estimated
consistently. Hence n(x) and f(zzlx) are ldentified, and can be thought
of as known for the purposes of identification of 90. The identification of
e0 thus depends on the existence of a unique solution to the integral equation
(3.1).

Existence of a unique solution to the integral equation is equivalent to

completeness of the conditional distribution of z, given x, a concept we
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borrow from the literature on minimum variance unbiased estimation. By
subtracting equation (3.1) from the same equation with 5(22) substituted
for eo(zz), it is easily seen that identification is equivalent to the
nonexistence of any function e(zz) = 5(22) - Bo(zz) # 0 such that
Ele(z,)Ix] = 0.

There are important examples where completeness is known to hold. If the

conditional density function is a member of an exponential family of the form,

(3.2) f(zzlx) = a(zz)b(x)exp{h(x)’t(zz)},

where a(zz) > 0 on the support of =z r(zz) is one-to-one, and the

2’
support of h(x) contains an open set, then completeness of f(zzlx) follows
from well known results on complete, sufficient statistics, e.g. Ferguson
(1967, p. 134). Thus, 60 will be identified if the conditional distribution
of z, given x takes this form.

Completeness is a natural generalization to nonparametric models of the
familiar conditions for identification in parametric, linear models. Consider
a parametric model with 92 linear in z, with unknown parameters ¢, say
90(22) = zéwo, and the conditional expectation of 22 given x linear in

X, say E[zzlx] = IIx. The condition that the integral equation have a

unique solution is
E[ZZ(VO-V)IX] = x'T (70-7) = 0 implies 22(70—7) = 0.

If neither of the distributions of x or z2 concentrate on a hyperplane,

this statement is equivalent to
Il (70-7) = 0 implies T =7

that is, M’ has full column rank. This condition is the familiar rank

condition, e.g. see Fisher (1976).



In special cases there are interesting necessary conditions that
correspond to the order condition in linear models. For instance, in the
exponential family example of equation (3.2), identification requires that
h(x) vary over an open set. If h(x) 1is restricted to be continuously
differentiable then this condition implies that there be as many components of

X as are in 2z i.e. as many instruments as right-hand side variables. For

2
another example, suppose that both x and z, are discrete with finite
support. Then equation (3.1) becomes a set of linear equations in the value
of eo(zz) at each support point of z,, with coefficients given by the
probability of each z, point given each x point, and one equation for each
support point of x. A necessary condition for existence of a unique solution
to such an equation system is that there be as many equations as numbers that
have to be solved for, i.e. that x has as many support points as z,.
Indeed, with this discrete example, the necessary and sufficient condition for
identification is that the rank of the matrix of conditional probabilities be
equal to the number of support points of z,.

Rhoerig (1988) has previously considered nonparametric identification of
the single equation (2.2), but under stronger conditions than those imposed
here. He assumes that the equation is a member of a system of equations with
continuously distributed instruments and disturbances that are stochastically
independent of instruments, while we only impose a conditional mean
restriction on the disturbance for a single equation.

The completeness condition is also useful for understanding
identification in some more complicated models, such as that of equation

(2.3). After differencing this equation for a pair of 6 values 60 and

0, the identification condition becomes



(3.3) 0= fa(C.C+)R+f(C+,R+IC,R)dC+dR+ = J‘6(C,C+){J'R+f(C+,R+IC,R)dR+}dC+

implies 8(C,C+) = 0,

By comparing the expression following the second equality with equation
(3.3), fixing C, and multiplying through by 1/E[R_IC,R] we see that this
condition is equivalent to completeness, for each C, of the "return

ad justed" conditional density {IR+f(C+,R+|C,R)dR+}/E[R+IC,R] of C, given

+
R. For example, if the original conditional density takes the exponential

form

£(C,,R,IC,R) = b(C,R)a(C,,R,Jexpih, (C,R)T,(R,) + h,(C,R)T,(C,)},

then the return adjusted conditional density will have an exponential form
with exponent exp{hz(C,R)Tz(C+)}, so that the identification condition will
hold if hz(C,R) varies over an open set for all fixed C in some set with
probability approaching one. Of course this condition is restrictive, but we
expect that identification will hold more generally.

Some additional insight is provided by a discrete case where the support
of consumption and returns is a finite set. Here, equation (3.3) becomes a
set of linear equations with coefficients given by return-adjusted conditional
probabilities. The necessary and sufficient condition for identification is
that the matrix of return adjusted conditional probabilities has rank equal to
the number of support points for consumption, for each possible value of
lagged consumption, for which it is necessary that there be at least as many
return support points as consumption support points. Of course, it should be
noted that further lagged variables can aid in identification if the model is
not first order Markov.

Identification in models with p(z,8) nonlinear in © can be difficult



to analyze, just as is identification in parametric nonlinear models. As in
parametric models, the only general identification conditions will be local

ones.

4, Nonparametric Two-Stage Least Squares

Estimation of 90 presents practical and theoretical challenges. It
will be helpful to address these challenges by focusing on the example of
equation (2.2). For this model, an estimation scheme is suggested by the
previous identification analysis. Given estimates n(x) and f(zzlx) of the

reduced form and conditional density respectively, it ought to be possible to

"solve" the integral equation

(4.1) w(x) = Ie(%z)f(zzlx)dzz

to obtain an estimator of 90. The practical difficulty with this scheme
is solving this functional equation.

An approach to estimating solutions to other integral equations has been
considered the statistics literature, e.g. Wahba (1979), Nychka et. al.
(1984), and O’Sullivan (1986). This literature has been concerned with a

related model, taking the form

(4.2) y = J'K(X.zz)eo(zz)dz2 + v, Elvix] =0,

where z2 is not observed, but K(x,zz) is known, and v represents
observational or modeling error. In Nychka et. al. (1984), y is the

two-dimensional, cross-section radius of a tumor, z2 is the
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three-dimensional radius of a tumor, and the form of K(x,zz) is that implied
by modeling tumors as spheres randomly distributed in tissue. The problem of
estimating 90(22) from K(x,zz) and an estimate of JK(x, zz)eo(zz)dz is
similar to the problem of estimating 60(22) from an estimate of mw(x) and
f(zzix), although our problem is more complicated because f(zzlx) must be

estimated from observations on z and x, while K(xz,z) is known.

2
The approach suggested in this literature, which we will adopt here, is

to use a linear in parameters approximation for @ Equation (4.1) becomes

o
linear in parameters for such an approximation, making it relatively

straightforward to construct an estimate of 90. Let

{pl(zz). pz(zz), o)

be a sequence such that linear combinations of enough terms can approximate

any function of z in a sense to be specified below. A linear in parameters

2

(i.e. series) approximation of 9(22) is given by
e(z,,y) =} J 7.p,(z,).
2 j=193P3' %2

Substituting 9(22,7) in equation (4.1) and equating ij(z )f(z Ix)dz with

a conditional expectation estimator E[pjlx] yields

(4.3) &G0 = L2 7 Elp,Ixl.

J

An estimate 9(22) = Z -1 JpJ(z ) of 90(22) can be obtained by choosing 7j
to minimize some measure of distance between observations on the left and
right-hand sides of equation (4.3). We will focus on the Euclidean distance

measure, with %j obtained as the solution to

n ,» J A 2
(4.2) mine(zz’7)€azt=1{n(xt) - ZJ=17JE[pJ|xt]} ,
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where 2z, denotes the data observations and the form of the set © will be
discussed below.

This estimator is a nonparametric generalization of 2SLS. The first
stage is calculation of the conditional expectation estimators ﬁ(xt) and
ﬁ[pjlxt], and the second a (constrained) least squares regression of ﬁ(xt)
on these conditional expectations. Nonparametric estimation occurs in both
stages. The first stage makes use of estimates of conditional expectations of
the right-hand side variables, rather than linear projections. If the model
were parametric then such a first stage would result in an efficient
instrumental variables estimator, under the conditions of Newey (1990); here
the conditional expectations are useful for identification. The second stage
is nonparametric in that 4% makes use of an arbitrarily flexible approximation
to 6. Consistency will require that J, the number of approximating terms,
goes to infinity with the sample size.

It should be noted that the estimator of equation (4.4) corresponds to a
particular interpretation of two-stage least squares, involving a predicted
value for the left-hand side variable. It is also possible to replace ﬁ(xt)
by Yy in the objective function without affecting the consistency of the
result, although for pedagogical reasons we will continue to focus on equation
(4.4).

To operationallze thig estimator, the approximating series, the number of
included terms, and the estimates of the conditional expectations must each be
specified. There are many candidates for the series. The one that we will
focus on here is power series in a one-to-one, bounded transformation of zz.
Let t(zz) = (11(22),...,tq(22))’ denote such a transformation, where q is

the dimension of =z For example, TE(ZZ) = exp(zze)/[1+exp(zze)] would do.

2

Such a power series would take the form
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. 2,(J)
(4.5 pylz,) =TI 7y(z,) " . =12 ..,

where Az(j) are nonnegative integers. Typically, such a series would be
constructed using low order terms (i.e. small values for Ae(j)) for low
values of j.

There are a number of different estimators of conditional expectations
that one could employ in the first stage, including kernel, nearest neighbor,
and serles. The consistency result will be general enough to allow for
several possibilities.

A important practical issue for this estimation procedure, as with other
nonparametric methods, is the choice of approximation degree. This choice
includes the number of terms J 1in the second stage as well as the choice of
“smoothing parameters" in the first stage. A data based choice of these
terms seems essential to making practical the theoretical advantages of
nonparametric methods. One possibile data-based method would be cross
validation at each stage. The conditional expectation estimates could be
chosen by cross-validation (e.g. see Hardle, 1990, for exposition). Then,
with the resuting conditional expectations estimates i(xt) and E[pjlxt] in

hand, then J could be chosen by cross-validating the second stage, i.e. to

minimize
n .~ J oa=ta, . .2
Lyqim(xy) Zj=17j blpjlxt]} '
where §3t is calculated from the second stage for all observations but the
tth. As is well known, this formula can be substantially simplified. Of

course, these are preliminary suggestions that deserve more careful
consideration. In particular, it is not clear that choosing J based on the
second stage 1s appropriate when one is interested in the structural function
90; see the discussion following 0’Sullivan (1984) for similar remarks.

-13-



An analogous estimation procedure is available whenever the residuals are
linear in 6. For example, consider the model of equation (2.2), with
identifying integral equation (3.3). The estimating equation that corresponds

to (4.1) is

(4.6) 1= IG(C.C+)R+f(C+,R+IC,R)dC+dR+.

Replacing 6 by a linear in parameters approximation 9(C,C+,w) =

J N N
ZJ=17jpj(C,C+) and equating .I'pj(C.C+)R+f(C+,R+IC,R)dC+dR+ and E[ij+IC.R],

J  a
4.7 1 =3, .E[p.R _IC,R].

(4.7) Lo 75EP R,

An estimator zji1§Jpj(c,c+) of 8, can be obtained by choosing ¥ to
minimize the Euclidean distance between observations on the right and left

hand sides of equation (4.7), i.e. as the solutlon to

. n J A 2
(4.8) mlne(C,C+,7)e®Zt=1{ 1 Zj=17jE[ij+ICt,Rt] )
The estimators for these two models have a common structure. Let 6(7)
denote a parametric approximation to 6. Consider a conditional expectation
estimator E[+]|x] that is linear, in the sense that for constants a, and

a E[alw1 + a2¢2|x] = alE[wllx] + azE[wzlx], and that E[1|x] = 1. Then in

2’

each case the estimator is the solution to

. n A 2
(4.9) mlne(z,7)€92t=1{ E[p(e(w))lxt] | 2

where 6(y) = 6(z,y¥) and p(8) = p(z,0) 1is the model residual. This
estimator 1s the natural generalization of the examples to models that are
nonlinear in 6. It is a nonlinear, nonparametric 2SLS estimator, if you

will.

For models that are nonlinear in 6, the computation of the solution of
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(4.9) may not be particularly easy, but the parametric approximation step at
least makes it feasible. For instance, the nonlinear errors-in-variables
example has a residual vector that is a quadratic function of 8.
Consequently, if a linear in parameters approximation to 6 1is used, the
residual is quadratic in the parameters, unlike the linear in parameters
resliduals above, and estimation is more difficult. 1In this example, it turns
out that a recursive estimation scheme can be developed when certain
polynomial approximations to © are used; see Hausman et. al. (1985) and
Hausman, Newey, and Powell (1989). In other examples, computation may be even
more difficult.

In order to estimate models like the nonlinear errors-in-variables
example it is useful to be able to use more than one residual. One way to do
this is to construct a minimum distance estimator (e.g. Malinvaud, 1980) of
the following form. Let E[p(6)|x] denote a vector of estimators of the
conditional expectations of the components of p(z,8) and let A bea

positive definite matrix. Consider an objective function of the form
rY _ n A 73
Q(e) = Zi=1E[p(9)|xt] AE[P(B)Ixt]/n

= trace{AL,_ Elp(6) x,1E[p(8) Ix, 1’ /n}.

Using a parametric approximation 6(y), an estimator @ = 6(y) can be

computed by choosing 6 as the solution to

Q(e).

mlne(v)e@

As previously discussed, the single equation estimators considered above are
of this form, and the estimator for the errors-in-variables model in Hausman,
Newey, and Powell (1989) is also of this form. In the next Section we

consider consistency of this estimator, and discuss the nature of the
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constraints that are implicit in the condition that 6(y)e®.

5. Consistency F /U,Mﬁ’&fm

There is a difficulty in showing consistency of nonparametrig 2SLS in the
first example which is apparently generic. Equatlon (3.1) is f integral
equation of the first kind, and hence its solution need not be a continuous
(in mean square) function of m. The reason for this is that the integral
operator Ie(zz)f(zzlx)dx need not have a continuous inverse; it does not
have closed range. That is, there exists reduced forms that are close in
mean-square with corresponding structures that are far apart. This
noncontinuity allows the possibility that the estimated structure may be far
from the truth, even when the reduced form is close to the truth, causing an
obvious problem for a consistency argument. This same feature has previously
been noted for the problem of equation (4.2) by Wahba (1979), Nychka et. al.
(1984), and 0’Sullivan (1986).

We circumvent this problem by restricting the set © over which
estimation is carried out to be a compact subset of a normed set of functions

(and 6, to be an element of this set). A well known topological result is

0
that a continuous, one-to-one mapping on compact metric spaces has a
continuous inverse. Thus, because the integral operator is continuous, for an
identified model the mapping from the reduced form to the structure is
continuous on such a compact set. ' Gallant (1981, 1987) has previously
considered estimation on compact function sets (in other contexts), and our
consistency results will be based on the same logic as his.

The type of compact set of functions we will consider imposes bounds on

higher-order derivatives. These bounds impose constraints on the
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nonparametric 2SLS coefficients, i.e. they specify the nature of the
constraint set © imposed in estimation. The practical implication of these
constraints is that the estimated function not be "too wiggly." Thus, in
applications it will be important to check the shape of the function and
impose constraints on the coefficients if it does not appear to be smooth
enough. These constraints will often take the form of dampened magnitude of
higher order terms in the series approximation, which are typically the scurce
of nonsmooth behavior. See Elbadawi, Gallant and Souza (1983) for further
discussion of how such constraints might be imposed in practice.

We will first give a consistency theorem that is applicable to any norm,
residual vector, and conditional expectation estimator having certain
properties, and then specialize it. For notational simplicity we will assume
throughout that the data are stationary. For a matrix A = [aij] let AN =
[trace(A’A)]l/2 denote the Euclidean norm, and for a function 6 let [Hell

denote a function norm (to be further specified below). The first assumption

imposes compactness.

Assumption 5. 1: 90 € © and ©® is compact in the norm Ill6l.

The second Assumption guarantees that the finite dimensional
approximation is rich enough to approximate the truth, no matter what it
happens to be. Let J index the degree of a parametric approximation to @,
e.g. the number of terms in the series approximation, and let GJ(Z) denote

a value of this approximation corresponding to a parameter vector 7.

Assumption 5.2: For any © € ® there exists ;J such that

llmj_%wHBJ(wl)—GH = 0.

It should be noted the parametric approximation is important as a

computational device. Under the following Assumptions, Q(e) is a continuous
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function on the compact set ©, so that there exists an estimator that
minimizes Q(8) over all of ©. However, this estimator is difficult to
calculate. Restricting 6 to a finite dimensional family for any particular
realization of the data simplifies this task.

The next assumption imposes a dominated Lipschitz condition on the

residual, in terms of the norm l6ll.

Assumption 5.3: There exists €, M(z) > O such that E[Hp(z,901H2+E] < o and

for all o, 6 € ® lp(z,8)-p(z,08)I = M(z)18-81€ and E[M(z)2+e] < a,

Assumptions 5.1 - 5.3 are sufficient for the compactness, denseness, and
continuity hypotheses for consistent estimation with finite dimensional
approximations to compact parameter sets, as exposited in Gallant (1987). The
next Assumption is useful for guaranteeing uniform convergence in probability
of the objective function. Let (z) denote a function of a data

observation.

Assumption 5.4: For € > 0 from Assumption 5.2, i) A 25 A, A 1is positive

1+e/2

definite, and if E[ly(z,)| ] <w then L,0w(z,)/n B El(z,)]; ii) if

ElW(z)2*®] is finite, Lo IEW(2) %] - E[w(z)lxt]HZ/n -£5 0; 1i1) either

A _wn . n _ _
a) E[w(z)lzt] = ES=1thw(zs), Weg 0, Es=1"st =1, (s,t=1,...,n), and

S
1+e/2

and if EllY(2)| <% <&, F L EWM(2)Iz]/n =0 (1); or b) El(2)lz,] =

" n PN
Pt(zs=1PsPs) Zs=1Psw(zs)'

Assumption 5.4 can easily be checked in some circumstances, and is general
enough to allow verification via future results. For instance, if the data
are i.i.d. then it is easy to use known results to show that Assumption 5.4
holds for nearest neighbor and series estimators. For K-nearest nelighbor
estimators with K — o,. K/n — 0, ii) follows by Lemma 8 of Robinson (1987)

and Proposition 1 of Stone (1977), while iii) a) holds by construction and
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Stone’s (1977) LP convergence result for nearest neighbor estimators. For

series estimator of the form given in 1iil) b), with P_ containing K

t
elements such that any function with finite mean square can be approximated
arbitrarily well in mean-square for large enough K, ii) follows as in Lemmas
A.10 and Lemma A.11 of Newey (1990), as long as K — « and K/nE/(E+2) -

0. Assumption 5.4 should also be "plug-compatible"” with future results on
nonparametric condtional expectation estimators, such as time series
properties needed for the fully primitive treatment of the second example.

This Assumption allows for some forms of data-based smoothing for
conditional expectations estimators. Convergence results that hold for all
features of a problem always allow trivially for a choice of these features
from among a finite number of all possible features. Thus, the result below
automatically allows for the conditional expectations estimators to be chosen
from a finite number of alternatives; e.g. for each sample size the K for
nearest neighbor or series estimators could be chosen from among the elements,
correspdonding to that sample size, of a finite number of sequences.

For series estimators, Assumption 5.4 will be satisfied for general forms
of data dependence under stronger conditions; see Newey (1990). However,
Assumption 5.4 imposes a strong restriction on the form of such data
dependence. Implicitly, the form of the weights Vet in Assumption 5.4 and
the approximating functions Pt are restricted to not depend on . Thus,
while they could be chosen based on some fixed ¥ (e.g. a linear combination
of p(z,8) for some preliminary estimator 9), they are not allowed to vary

with ¢ (i.e. with 68 in p(z6)).

The next Assumption specifies the behavior of the approximatlon degree.

Assumption 5.5: & = argmineeéﬁ(e) where 8 = {65(7) € 8} and I8 e

As promised earlier, this assumption allows for the degree of approximation J
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to be data-based, in a very general way. However, it should be noted that it
is not restrictions on the growth rate of J that are used to obtain
consistency, but rather the compactness restriction. Thus, while rapid growth
rates of J are allowed by this assumption, it is plausible that the
compactness restriction would have more "bite" for large values of J,
imposing strong constraints on the coefficients of higher order terms.

The following is the general consistency result.

Theorem 5.1: If Assumptions 3.1, 5.1 - 5.5 are satisfied then Hé-eoﬂ 25 0.

We specified the hypotheses of this result to be very general in the hopes
that they would be satisfied in a variety of environments. However, for the
purpose of checking them in a particular example, primitive conditions are
more useful. Assumptions 5.3 and 5.5 are already in a primitive form, and
primitive conditions for Assumption 5.4 were discussed above, but we have not
given conditions for Assumptions 5.1 and 5.2.

The primitive conditions for these Assumptions will be smoothness
restrictions of the form alluded to earlier. For the moment, consider the
case where O is a single function of an argument v € RP. Denote the
partial derivatives of 6(v) by

N A, A
pe(v) = (8/8v,) ---(a/avp) Pa(v),

where A = (hl,---,hp) is a p-vector of nonnegative integers. The order of

the derivative is [A] = Zkzllhel. Let V denote a subset of RF.

Assumption 5.1’: V is a bounded, open, convex set, 8 = {6 : o6(v) is
s ) A
continuously differentiable to order m+2 on V, max|A|5m+1supv€vHD e(v)h =

b, |Al = m+l}, and l6ll = max supveleAB(v)I.

|A|=m

Compactness of @ in the norm lell 1is shown in Elbadawi, Gallant, and Souza
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(1983).

A bounded domain for 8 1is a strong restriction, that can be
circumvented in some cases. For instance, it may be possible to transform the
argument of 6 so that this assumption is satisfled. Let v € RP denote the
argument of 6, and let T(v) denote a bounded tansformation with infinitely

continuously differentiable inverse, e.g.

~ ~

v v v v
1,...,e P/[1+e P1)’.

T(¥) = (e Vl1+e !

For v = 1t(v), 6 1is a function of v of the form 6(v) = G(T_l(v)). 1f
the range of t(v) 1is an open, convex set, 6(v) is continuously
differentiable to order m+2, and and there is a fixed b bounding the
derivatives of 6(v) up to order m+l1, then Assumption 5.1’ will be
satisfied.

To provide primitive conditions for Assumption 5.2 it is necessary to
specify the approximating functions. Elbadawl, Souza, and Gallant (1983) show
that for ® and Il-ll in Assumption 5.1’, Fourier series satisfy Assumption
5.2. Here we consider weighted, transformed polynomials. For a p-vector A

A
of nonnegative integers let vA = ﬂizl(vi) {

Assumption 5.2’: There are w(v) > 0 and one-to-one T(v) that are m+2
times continuously differentiable such that GJ(W) = w(v)zjilyjt(v)h(J),

where (A(1),A(2),...) includes all p-tuples of nonnegative integers.

Note that typically one would use lower order polynomial terms first, meaning
that A(j) with smallest |[A(j)| come first.

It is now possible to state a result that imposes more primitive
conditions. The following theorem allows for @ to be a vector, each element

of which satisfies Assumptions 5.1 and 5.2.
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Theorem 5.2: Suppose that 0 = (el(vl),...,es(vs)). with corresponding 61

and "ei"i' satisfying Assumption 5.1’. Also suppose that eJ(y) =
(9J1(71),...,9Js(75)), with corresponding eJi(wi) satisfying Assumptio?
5.2’. If, in addition, Assumptions 3.1 and 5.3 - 5.5 hold for € = elxeeexes

and llell = e ll, + =<+ + ll@ I , then lé-6.1 -2 0.
11 s s 0

6. Work in Progress

The noncontinuity problem encountered in Section 5 suggests that it may
be worthwhile to consider models that strenghten the conditional mean
restriction, with the goal of relaxing the compactness restriction and
obtaining estimators that should be more efficient. One such model is a

triangular special case of the first example, taking the form

y = 90(22) + €
(6.1) , (e, V') independent of x.

z, = Mx) +V

where T(z) denotes an unknown reduced form function and V a vector of
residuals. This model strengthens the assumptions by imposing independence of
the disturbances and instruments rather than conditional mean zero. An even
more restrictive feature of this model is a reduced form for the right-hand
slde variables that is linear in disturbances.

A useful implication of this model is the following: By independence of

x and (g,V‘),
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(6.2) E[ylzz.V] = 90(22) + E[SIZZ,V] = 90(22) + Ele|n(x), V]

= 90(22) + E[elV] = eo(zz) + A(V).

That is, conditional expectation of vy given x and V is an additive
nonparametric regression model. If V were known, one could estimate
(references). Although V is not known, V can be estimated as the
residuals ¢ from a nonparametric regression of z, on X. Then 90(22)
can be estimated as the z, component from an additive nonparametric
estimator for the regression of y on 2z, and V. Preliminary results for
this estimator indicate that it is (mean-square) consistent, without the need
for any smoothness restrictions. Furthermore, the estimator of the function
90 (as well as its derivatives) is asymptotically normal, including an

ad justment for the presence of V.

The restrictive nature of the reduced form for right-hand side
endogenous variables suggests that it may be fruitful to investigate other
models intermediate between the conditional mean model and the triangular
model. One such model is where the disturbance is independent of instruments
but the model is not triangular. We are currently investigating this case is,
put are not yet ready to report our results.

Other work in progress includes empirical work on the examples that were

mentioned. We intend report on all of this work.
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Appendix

Throughout the appendix C will denote a generic constant that can be
different in different uses. The following restates Corollary 2.1 of Newey

(1989), where it is proved.

Lemma A.1: Suppose that i) © is a compact set; ii) Q(8) is continuous
and Qn(e) is nonrandom and equicontinuous; iii) for each 0 € @, {(8) -
Qn(e) = op(l); iv) there exists € > 0 and Bn = Op(l) such that for o, 8

A _ < ~- e A _ p
e ® |Q(8)-Q(B)] = BnHB oll-. Then maxeeng(e) Q(8)] — 0.

The following result is a convergence in probability version of Gallant

(1987).

Lemma A.2: Suppose i) Q(8) has a unique minimum on © at 6, ii) 4(e)
and Q(8) are continous, © is compact, and maxeeelﬁ(e)-Q(G)l 25 o;
ii1) & are subsets of ®© such that for any 6 € ® there exists © € 0
-~ 'p -~ - . AA p
such that @ — 8. Then 6 = argmlneeeQ(e) — 6.

Proof: Consider any neighborhood N of 90. By compactness, continuity

of Q(@), and i) (identification),

€ = [min

08NS Q(el)] - Q(BO) > 0.

Using iii), let & € & be such that & —» 6, By the definition of 8,

Q(8) = §(8), so that by uniform convergence (see ii)), Q(8) < Q(8) + e/2
with probability approaching one (w.p.a.1). Furthermore, by the definition of
8 and continuity of Q(8), Q(8) < Q(eo) + €/2 w.p.a.l. Then by the
triangle inequality, Q(8) < Q(eo) + € w.p.a.l. By the defintion of e,

this event can only happen when 8 e N, so that 8 € N holds with

probability approaching one. The conclusion follows by the arbitrary choice
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of N. =

Proof of Theorem 5.1: The proof will proceed by verifying the hypotheses of
Lemma A.2. Consider hypothesis i) first. Define Q(e) =

trace(AE[E[p(8) |x]E[p(0)ix]’]) = EIE[p(8) Ix]’AE[p(8)]x]], where the z index
is dropped from p(z,8). Note that Q(Bo) = 0. By Assumption 3.1 and
positive definiteness of A, if @ = BO’ Elp(8)[x]’AE[p(8)Ix] > 0 with
positive probability, and hence Q(8) > 0.

Before proceeding it is useful to note by © compact and Assumption 3.1

(A.1) lp(@) = lip(8 )il + M(z)lle-8 Il = C{lip(8,)ll + M(z)} = M(z),

0

2+€

EM(z)" "] < .

Continuity of Q(8) then follows by Assumption 5.3, and the Cauchy-Schwarz

and triangle inequalities, which for 9, 8 € © give
(A.2) 1Q(8)-Q(e)| = E[IE[p(8)Ix]’AE[p(B)-p(8)Ix]]]

+ ELIE[p(8) IX]’AE[p(8)-p(0) |x]]]

IA

NANEL(E[Np(8)N]x] + Ellp(8)I1x]1)E[Np(8)-p(0)1|x]]

1A

C2{(EMNf(2) 12D Y21 ELIp (8)-p(0) 121112 < cud-ol.

Next, we glve some important inequalities on the sample second moment of
the conditional expectation estimates. In case a) of Assumption 5.5 iii)

it follows by Cauchy Schwarz and (A.1) that
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. 2 2
(A.3) Lo WElp(8) Ix, 11°/n = LI IE 2w p(z_,0)1%/n

n n 2 n n o 2
= Zt=1zs=1"st“p(zs’e)" /n = 2t=1zs=1wstM(Z) /n
- 7.2 eii?Ix, 1/n = B, = 0_(1),
t=1 t 1 P
where the last equality follows by E[(#2) 1Y% = E[#°*€] < w. Also, it

follows similarly by Assumption 5.3 that for ©, 8 € @ that

(a0) TP IELp(B)-p(e) Ix 11P/n = (3,2 EIMPIx, 1/n)1B-01%
- B E_a1l€ A& =
= BZHG eil=-, B2 = Op(l).
In case b), for p(8) = (p(zl,e),...,p(zn,e))’ and Q =
[Pl,...,Pn]'(zszlPsP;)_[Pl,...,Pn], by Q idempotent and Markov,
n ,a 2 . 2 2
(A.5) Et=1HE[P(9)|Xt]" /n = lp(8)’QQe(e)iI~/n s lp(8) p(8)I~/n

n o 2, _ &
= Zt=1M(zt) /n = B, Op(l).

Similarly, it follows by Assumption 5.3 that

(a.6) I, IEIp(B)-p(0) Ix 10%/n = T2 Hp(8)-p(0)1%/n

2€ _ & ig-e1°€, B =0 (1).

< (Vv * 2 -
= (Lt 1M(zt) /n) lle-oll >

Next, note that under Assumption 5.4, ﬁ[w(z)lzt] is a linear function
of y(z ) for any s, so that for O, ® € 8 it follows by Cauchy

Schwarz, and eqs. (A.3) and (A.4) in case a) or egs. (A.5) and (A.6) in case

b) that,
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(A.7) 14(8) - G(o)l

A

WANE, 2, (UELp(8) Ix, I8 + KELp(6) Ix, 1DE[Ip(8)-p(0)HIx,1/n

1A

IRIC (D2 1B Lo (B) 1x, 11%/m) Y2 4 (2, i Lp(e) 1x, 10%/m) /2y

(T 2, 1ELo(8)-p(0) Ix, 14%/n) /2

1A

. aa 1/2 % € a A oa 172
WAN-2: (B B)) “ud-en®, nAu-2.(88,)7° = 0,(1).

It follows that both hypotheses ii) and iv) of Lemma A.1 are satisfied.

Next, to check hypothesis iii) of Lemma A.1, note that for any @ € O,
18(8) - L2 Elp(8)Ix,1"AE(p(6) I, 1/n]
< A n 5 £, _
= WAIL, 2, (IE[p(8) Ix, 1N + IE[p(8) Ix, INIELp(8) 1%, 1-Elp(6) X, 1i/n
= WAN((E,D 1BIp () 1%, 10%/m) /% + (1,2 Elipo)1Z1x,1/m) /%) -

2

(2, IELp(0) Ix, 1-Elp(0) Ix, 11%/n) Y/

- n _ o2 1/2 _
= Op(l){Op(l) + (Zt=1E[M Ixt]/n) }op(l) = op(l).

It follows similarly by Assumption 5.2 i) that

I5,04Elp(8) Ix, 1°AE[p(8) Ix, 1/n - EIE[p(8) Ix, 1/ AE[p(8) Ix, ]| = o (1),

so that iii) of Lemma A.1 follows by the triangle inequality. Then ii) of
Lemma A.2 follows by the conclusion of Lemma A.1.

To check iii) of Lemma A.2, consider 6 € 8, and choose 7J such that
HBJ(wJ)—BH — 0 as J > wo. By J -2 o it follows that uej(yj)—eu L5 0.
Also, by the specification of & in Assumption 5.5, 63(73) € 8, giving iii).

Since we have verified hypotheses 1) - i1ii) of Lemma A.2, the proof
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follows from the conclusion of Lemma A.2. |

Proof of Theorem 5.2: The proof proceeds by verifying the hypotheses of
Theorem 5.1 for € = "12191 and lell = Zizluei“i' Assumption 5.1 holds for
each 1, (i=1,...,s), by Lemma 2 of Elbadawi, Gallant and Souza (1983), upon
noting that their proof only uses the lower bound on the derivative to show a
continuity property that is part of neither the hypotheses or the conclusion
here. To check Assumption 5.2, we note that by nonnegativity of wiv), Tv)
one-to-one, and the smoothness assumptions on these functions, it suffices to
show the result with w(v) =1 and z(v) = v. By the Corollary of Theorem 1
of Gallant (1981), the set consisting of a finite linear combination of
Fourler terms in v is |I-|I1 dense in @i. Therefore, it suffices to show
that the II-IIi closure of the set of functlions in Assumption 5.2’ includes
all Fourier terms.

Note that a Fourier term 1is continuously differentiable to all orders.
Also, the abloslute value of partial derivatives are uniformly bounded by
CIAI, for some constant C and the order of the derivative I[Al. By
convexity of V, it follows that the Taylor expansion of any derivative of a
Fourier term around any flxed point will converge uniformly to the derivative
of the Fourier term. Furthermore, the Taylor expansion of the deriviative
equals the derivative of the Taylor expansion, implying convergence of the
Taylor expansion of a Fourier term in the Sobolev norm of Assumption S5.1°.

Since the Taylor expansion is a multivariate polynomial, the conclusion

follows. &
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