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There has been much recent work in econometrics concerning the
properties of maximum likelihood estimators in models that are possibly
misspecified (e. g. White, 1982>. One of the important assumptions that
is made in such work is that. the value of the parameters that maximizes
the population expectation of the log-likelihood is unique. VWhen this
parameter value is unigue the maximum likelihood estimator can be
interpreted as a consistent, asymptotically normal estimator of this
parameter value. VWhen this parameter value is not unique there is an
identification problem concerning this parameter.

In correctly specified models the uniqueness of the parameter
values that maximizes the expected log-—likelihood is a straightforward
implication of dependence of the data generating value on the value of
the parameter. Also, in some models where the likelihood may be
specified but some structure is still imposed on the data generating
process (e.g. Gourieroux, Monfort.,, and Trognon, 1984> identifcation
results from certain natural conditions. However, in fully misspecified
models identification is essent.ially an unverifiable assumption,
involving as it does the unknown data generating process. Nevertheless,
it is still often very convenient to impose an assumption of that. the
population guasi maximum likelihood parameter values are unique (e.g.
Newey and McDonald, 1987>.

. The purpose of this note is to show that if a model satisfies a set
of readily verifiable conditions then identification of the quasi
maximum likelihood parameter values will hold for maost data generating
processes, where the technical meaning of the word "most"” will be
discussed below. This observation can help to justify the
identification assumption that is often made. In models where the
conditions difscussed below apply it will be difficult <although not
impossible? to construct examples of data-—-generating processes where
identification does not hold.

In this not.e the assumptions for the model will be presented
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and discussed, the generic identification result presented and
discussed, and the proof given.

The type of estimation environment. that will be explicitly
considered in this note is that of quasi maximum likelihood estimation
with i.i.d. observations. Let £f(z]|63, © « @ denote a family of
probability density functions with respect. to a measure u, where ©
is a gqx 1 vector of parameters and z 1is a p x 1 data vector. Let
Zys ---, 2y denote a random sample of data drawn from the c.d.f. G(=zD.
The quasi—-log likelihood is given by ane) = Ztgilnf(ztle)/n, where
the term quasi refers to the situation where G{(z> need not be the

c.d.f. corresponding te f(z|6> for any ©. The gquasi—maximum

likelihood estimator (QMLE?> is defined as

i o = argmaereQn(e).

The asymptotic properties of the QMLE are determined in part. by the

behavior of the population expectation of the log—likelihood. Define

2> QC(O,G) = JInf{z|o2dG(=zd, OCG) = argmaxee@Q(e,G),

where the assumptions given below will be sufficient to guarantee that
these expressions exist.. The set of gquasi-true parameters ©(G> is the
population quantity that corresponds to the QMLE.

One of the conditions that is useful to impose in determining the
properties of ©(G> is that f(z|©) satisfy a standard set of

regularity conditions:

Assumption F: The support 2 of f{(z|9) does not depend on © and
Inf(z|©®> is twice differentiable in © for all =z € Z and © e 0.
Also, 1Inf(z|®> and its first. and second partial derivatives are
cont.inuous in (z,0) on Z x ® for all © € ® and there exist
functions a(z> and »(2), where o(z) is continuous on Z and a

constant & > 0 such that for all © 9,



1+&

3D [fCz 5] = (=), [InfCz |0 | £ oz,
-
18InfCz |€)/901% < okz),  |F°1nf(z|0)/8036° | < alz),
Sp¢zddp < w, sz czrdu < .

Among other things this assumption implies that the equality between the
outer product and Hessian versions of the information matrix holds, and
that. the QMLE will be consistent and asymptotically normal uniformly in
© when the data is actually generated by f(z]|0> and €@ is
identified. The assumption concerning continuity in 2z 1is not as
restrictive as it may first appear, since this continuity is only
required to hold on the support 2 of By, For example, the
likelihoods of many limited dependent variable models will satisfy this
restriction when Z¢ includes indicator functions for various possible
regimes of the observed dependent variables.

It is also useful to impose a regularity condition on the set of

distributions that have a density with respect to the dominat.ing measure

M.

Assumption D: For any G with finite support 8§ that is a subset. of
Z there exists a sequence {Gk} converging in distribution to G such
that each Gk is absolutely continuous with respect g and has support

contained in a compact set which does not vary with k.

This assumption will be satisfied in most applications. For example,
if u is equal to Lebesgue measure on the real line then for any random
variable that takes on a finite number of values there always exists a
sequence of continuous distributions with uniformly bounded support that
converges in distribution to this random variable.

Another condition that will be imposed is the usual compactness
assumption for the parameter space ©®, along with an assumption

concerning the smoothness of its boundary:



Assumption T: @ is compact and for any boundary point 6* of @, 6
can locally be represented as (@ : s(6) = 0 where s5{(& 1is a vector
of twice continucusly differentiable functions such that sC0™ = 0 and

3s¢e™ 80 has full row rank.

This assumption restricts © to be of full dimension locally at each
peint.. This assumption is not. as restrictive as it might first appear,
because in other cases (e. g. when ©® is the set of values such that
the Euclidean norm of © is equal to some constant), it will often be
possible to construct. a local parameterization that is of full
dimension. It is possible to state a more general assumption that would
give the following results, but this assumption is fairly simple and
includes many cases of interest, such as the case where @ 1is a sphere
or a box.

A condition that is obviously essential to existence of a unique
maximum for QCO,G> 1is identification of the parameters © for the
likelihood fCz|6>. Without such an assumption the likelihood could
coincide for two different parameter values (i. e. f(z|@ = f(z]e’>
identically in =z for € = ©’) and (6> might not consist of a single
point.. Also, the local identification assumption of nonsingularity of
the information matrix is essential for asymptotic normality of the
QMLE in a correctly specified model. The following assumption imposes
standard local and glnbal identifiability conditions on f£<(z]|€>. Let
1{A> denote the indicator function for the event A,

Assumption I: For each © and ©’ in @, J1[f(z|OO=(z|0’>1f(z]|0>du
> 0 and I[azlnf(zle)/aeae’]f(zle)dp is nonsingular,

Together, Assumptions F, T, and I form a set of regularity and
ident.ificat.ion conditions that can be checked in a straightforward way
for a particular model. The main result of this paper is to show that
these assumptions are sufficient to imply that the set of maxima of the

expected quasi-log likelihood will consist of a single, locally
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identified point for most distributions. To state this result is
necessary to state what is meant. by local identification for the
expected quasi likelihood and to state what is meant by most
distributions. The local identfication condition that will be

considered is:

Condition L: Either is an interior point of @ with Qe(e*,G) =
0 and .Qee(e*,G) negative definite, or 6* is a boundary point. with
Q(e*,G) = se(e*)’k for some vector A consisting entirely of positive
elements and A’Qeece*,G)A €0 for all A =0 such that A’sece*) = 0.
Also, f[alnf(zle*)/aeltalnf(z|e*)/69]’dG(z) is nonsingular.

The approach to formalizing the statement. that. uniqueness of
©(G> holds for most distributions is to consider a class of
distributions and a metric for this class of distributions and to show
that. uniqueness holds on an open and dense subset of this class of
distributions. It is desirable to restrict the set of distributions to
be absolutely continuous with respect to u. For example, this
restriction would gaurantee that variables that are continuously
distributed under fCz|©) are also continuously distributed under
G(z>. Also, to guarantee that the function QCO,G3> and its derivatives
are well behaved (exist and are continuous in 6) it is useful to
impose conditions such that the expectation of the dominating function
aCz> 1is bounded. Let B be any constant such that B >

fa(z)1+67(z)du. The class of distributions that will be considered is

GCB> = {G : G 1is absolutely continuous with respect to u
and JsaCz>1%%46cz> < B».

The metric on g(B)> +that will be considered is the variational distance
d<{G,G’> = supAlfAdG - fAdG’l.
The main result of this note can now be stated as:

s



Theorem 1: If Assumptions F, D, T, and I are satisfied then the subset
(B> such that ©6(G> consists of a single point ©™ where Condition L

is satisfied is open and dense in G(BD

It is natural to ask to what extent this result depends on the
choice of metric on the set of distributions, which corresponds to a
choice of a family of neighborhoods for any particular distribution. It
is possible to change the family of neighborhoods somewhat and retain
this result.., For example, if the metric is chosen to correspond to
convergence in distribution and g(B> is further restricted to the
class of distributions of Zy that are tight then this result will
still hold. VWhat is not known is whether or not it is possible to
enlarge or shrink the family of neighborhoods and retain this result.

It is straightforward to extend this result to other types of
misspecified estimation environments. For example, consider an
estimator & = argmaxeeeztglp(zt,e)/n for some p(z,0> function that.
need not be a quasi log likelihood. This estimator is of the general
t.ype considered by Huber (1967)>. It is possible to show that under
conditions regularity conditions analagous to those of Assumption F
and a global and local identification condition under correct
specification (analagous to assumpt.ion I> that the population parameter
value which is estimated by &, namely the maximum of Jfp(z,©>dG(=z),

will be unique and locally identified for most distributions.

Proof of Theorem 1: Openness will first be shown. Consider some
distribution 6™ for which ©¢6™ = (0™ and Condition L is satisfied
at e*. Let Gk be a sequence -of distributions converging to G*. For
any distribution 6 in g(B> 1let g denote its density relative to

M. Then we have



4d [Q(G,Gk)—QCO,G*)I < fllnf(zle)lng(z)—g*(z)ldu

1A

Falz> |g (zd-g (2 |du

A

F1CaCz>>Kalzd[g (zd+g (2> 1pCzddy + K2d<G, , 6™,

< Lr1caczr>p oy K+ Org (zd+g™ 20 1220 du + K2dCG, 6™,

K—é

1A

2B + K2d(G,,G™.

Since K_ézB can be made arbitrarily small by choosing K large enocugh
and d(Gk,G*) goes to zero it follows that Q(G,Gk) converges Lo
Q(e,G*), where this convergence is uniform in © since the last line
of this equation does not depend on 6. Also, it follows by an
ident.ical argument that the first and second derivatives of Q(e,Gk)
converge uniformly in © to the first and second derivatives of
Q(e,G*), respectively, so that QCO,6) and its first. and second
partial derivatives are jointly continuous at (9*,6*), where ©C(6™ =
<e™y. Convergence of (G > to ©cG™ = <(6"r rollows by the theorem
of the maximum. For 6% an interior point it follows from Condition
L satisfied at (9*,G*) and uniform convergence that Q(e,Gk) will be
strictly concave in a neighborhood of 9* for large enough Kk,
implying that ecek) must. be a singleton. Consider the case where o™
is a boundary point of ©. By Assumption T it is possible to, without
loss of generality, consider a local reparameterization such that o =
0 and in a neighborhood ¥ of © the set © is parameterized by <{©
91 < 0 for some partition © = (91’,62’)’. Condition L for this
local reparameterization implies that all the elements of aQ(e*,G*>/aei'
are negative, which must also hold for Qece,sk)/aei on a neighborhood
of &% for large enough k, implying that all elements of GCGk) must
have 6& = 0 for large enough Kk, so that e(Gk) a singleton for
large encugh k fellowe by applying the interior case argument to ez

and Q(O,OZ,Gk).



To show denseness, consider G such that 6(G) does not consist
of a singelton and consider £ > 0., Let ©* denote an element of
©(G> and let gé(z) = (1-&rglz> + 6f(z|6*) for 0 < 46 =<1 and Gé

denote the corresponding c.d.f.. Note that

(5> d(G,Gy) = &5|glzd-Cz|6™ |dp < 25,

so that d(G,Gé)  gr2 for & < £74. Furthermore, by Assumption I and
t.he information inequality C(e.g. Rao, 1973, egqg. 1e.6.6), Q(G,Gl) <
Qe™,6,> for all © = 6, so that for &> 0 and © = 6",

62 Q(G,Gé) = (1-62QCe,6) + 6Q(9,Gl)

< (1-6>Qe™, 6> + 50¢0™,6,5 = o™, 6,

so that (G = <6™>. If 6" is an interior point then the first and
second order conditions of Condition L follow immediately from
the first and second order necessary conditions for @™ to be a maximum
of QCO,6>, which are Qg(6™,6> = 0 and QgeC®™,6> negative semi
definite, and from the nonsingularity of the information matrix that
is posited in Assumption I.

It. remains to consider the case where e* is a boundary point.
Consider a local reparameterizat.ion of 6 at ©* as used in the proof
of openness. From the first. order necessary conditions it can be

assumed without. loss of generality that. for some partition 91 =

(611’,612’)
7> Q 0,G> 0, Q G,6) =0, Q, C0,G> = 0,
911 912 62
where <« denotes "less than for each element'. Partition © =

(611’,9b’). The second—order necessary (sufficient> condition for a

local maximum is



8> eb’ereb(o,G)eb < (<3 0 for HGbH =1, 612 < 0,

as can readily be verified by a second—order mean value expansion.

To begin the construction of the required distribution that is
close to G, let. ¢¥ denote the distribution function for f(zle*)
and let s(z,0) = Jlnf(z|0>-/30 denote the score vector. By Assumptions
F and I, Qg0%,6™ = rscz,6"d6™ = 0 and fsCz,0s(z,0’d6" =
Qpe®™.6™ is nonsingular. It follows from Chamberlain (1987, Lemma 3
that there exists {Zi’°"’zm} < Z and Py Ci=1,...,m), such that
p; 20, =Mp, =1 and, for s = [sCz,,0™,...,5Cz,,0"1’, and P be
the diaganol matrix P = diag[pl,...,pm],

<9 p’S =0, S’PS 1is nonsingular.

It follows from this equation that there does not exist a vector A

with nonegative components and a nonzero vector r such that Sr = A,
since p’A = p’Sr = 0 implies A = 0, which implies S’PSr = S’PA =

0, a violation of nonsingularity. It then follows by Theorem 7?7 of
Rockafellar that there exists a vector gq = (ql,...,qm)’ of nonnegative

numbers such that.

10D q’S1 « 0, q’Sz = 0.

where S = [Si’ Szl is partitioned conformably with 6. Note that ¢

can be chosen so that Z'ziqi =1. Let G denote the distribution with

i
Prob(z=zi) = gy- Consider the family of distributions

C11) Gg g5» = C(1-82G + SLC1-5">G" + &°B1.

Note that d(G,Gé,é,) < 45. Hold & frixed so that this distance is
as small as desired, and for notational convenience supress the &
subscript on G&,é” As above e(GO) = {0, while by the theorem
of the maximum limé,_’oe(Gé,) = {07r. Also, there is a & and a

neighborhood # of 0 on which the eigenvalues of Qeece,(1—6’)G*+6’G)
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are bounded negative uniformly in &’ =< &7. Therefore, the second order
sufficient conditions from equation (8> for & = 0 to be a unique local
maximum of Q(G,Gé,) are satisfied uniformly in &' < &’. Furthermore,
the first and second partial derivatives of Q(G,Gé,) are continuous
uniformly in &’, and by equation (10> 60(0,65,)/6612 < 0,
aocn,eé,)/aez = 0, and the components of 6Q(0,G6,)/6611 are bounded
negative uniformly in &’. It follows that 0 is the unique local
maximum of (e,Ga,) for © in a neighborhood of 0 that does not
depend on &° for &’ small encugh, and is thus the unique global
maximum for &’ small enough, Condition L is satisfied at O by
equations (7> and (9, aQ(O,G*)/ae = 0, and by the sufficient. version
of ¢8> with €,, = 0.

By Assumption D there is a sequence {Gk} of distributions that
are absolutely continuous with respect to u and have support contained
within some fixed compact sett C £ Z2 such that. this sequence converges
in distribution to G. Also, by continuity in =z and © of 1lnf(z|&>
and its first and second partial derivatives and compactness of C x 0,
it follows that for any sequence ek - O, Q(ek,Gk) — QC0,6D>, and
that the analagous property hold for the first and second partial
derivatives of Q(e,Gk). By construction, the analagous results hold
for Q(e’Gé,é’,k) and Q(G,Gé,a,) and their respective first and
second partial derivatives, where Gé;,(,:-.,,k = (1-8G + s[C1-6D6™ +
G’Gk]. Note also that by o(z) continuous «a(z> is bounded on G,
sot. that fa(z)1+6de is bounded in k. Thus, Gé,a’,k will be an
element of g(BY for all k if &’ is small enough. The conclusion
then follows from d(G’Gé,a’,k) < 46 and from the same argument as used

to prove openness.
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