Appendices: Not For Publication

Appendix A: Checking for randomization balance

To check whether the randomization is balanced, we chose ten variables for this check prior to obtaining the data from the experiment. Specifically, we examined the following characteristics from the baseline survey: per capita expenditures, years of education of the household head, calculated PMT score, the share of households that are agricultural, and the years of education of the sub-village head. We also examined five village characteristics from the 2008 PODES, a census of villages conducted by BPS: log number of households, distance to district center in kilometers, log size of the village in hectares, the number of religious buildings per household, and the number of primary schools per household.

The results from this analysis are shown in Appendix Table 2. In Columns 1, 2, and 3, we present the mean of each variable for the sub-villages assigned to the PMT, community, and hybrid treatments, respectively. Standard deviations are listed below the means in brackets. We present the difference in means between the community and the PMT groups in Column 4, between the hybrid and the PMT in Column 5, and between the hybrid and the community in Column 6. In Columns 7 – 9, we replicate the analysis shown in Columns 4-6, but additionally control for stratum fixed effects. Robust standard errors are shown in parentheses in Columns 4 – 9. All variables are aggregated to the sub-village level; thus each regression includes 640 observations. In the final row of Table 3, we provide the p-value of a test of joint significance of the difference across each of the outcome variables.

The sub-villages appear to be generally well-balanced across the ten characteristics. Out of the sixty individual differences presented, three are statistically significant at the 5 percent level – precisely what one would expect from random chance. All of these significant differences are in Column 9, which compares the community and hybrid methods, controlling for stratum fixed effects. Specifically, controlling for stratum fixed effects, households in community locations have less education and are less likely to be agriculturists than households in the hybrid treatment, and hybrid villages have 8 percent fewer households than community villages. Looking at the joint significance tests across all ten variables considered, without stratum fixed effects, the only jointly significant difference is between the hybrid and the community (Column 6, p-value 0.089); with stratum fixed effects (Column 9), the p-value is 0.028. All results in this paper are robust to specifications that include these additional ten control variables.

Appendix Table 1: PMT Regressions by district

	Humbang	Serdang	Pematang	Purba-							Tana	
District	Hasundutan	Bedagai	Siantar	lingga	Wonogiri	Demak	Kendal	Semarang	Bone	Enrekang	Toraja	Makasar
Indicators												
Type of place		-0.086		-0.077	-0.068	-0.095	-0.230				0.112	
(1=Urban 0=Others)		(0.023)		(0.025)	(0.025)	(0.020)	(0.017)				(0.031)	
Percapita Floor			0.004			0.001		0.001	0.001	0.001	0.002	0.003
•			(0.001)			(0.001)		(0.000)	(0.000)	(0.001)	(0.001)	(0.001)
Type of Floor	-0.100	0.113	0.149	0.118	0.133	0.111	0.096	0.169		-0.108		0.088
(1=Not earth 0=Others)	(0.024)	(0.026)	(0.031)	(0.018)	(0.017)	(0.018)	(0.015)	(0.027)		(0.021)		(0.028)
Type of Wall	0.104	· /	0.053	· · · ·	0.055	· · /	0.033	· · /	0.119	0.059	0.114	× /
(1=Brick/Cement 0=Others)	(0.027)		(0.022)		(0.018)		(0.018)		(0.026)	(0.028)	(0.038)	
Toilet Facility	0.056	0.094	0.184	0.127	0.066	0.094	0.123	0.073	0.103	0.033	0.087	0.140
(1=Private 0=Others)	(0.015)	(0.022)	(0.034)	(0.017)	(0.019)	(0.019)	(0.015)	(0.020)	(0.017)	(0.014)	(0.019)	(0.022)
Drinking Water source	0.035	(,	0.112	0.044	((,	0.064	0.100	-0.047	0.100	0.028	0.117
(1=Clean 0=Other)	(0.014)		(0.036)	(0.017)			(0.014)	(0.019)	(0.018)	(0.013)	(0.016)	(0.020)
Electricity (1=PLN 0=Others)	(0102.1)	0.113	0.294	0.112	0.177	0.125	0.286	0.286	0.190	0.093	(01020)	(0.020)
		(0.033)	(0.074)	(0.034)	(0.077)	(0.043)	(0.081)	(0.123)	(0.021)	(0.021)		
Type of Roof	0.078	0.085	0.108	(0102.1)	-0.208	-0.121	-0.037	-0.075	0.178	0.093	0.095	0.122
(1=Concrete/Corrugated 0=Others)	(0.034)	(0.042)	(0.046)		(0.021)	(0.024)	(0.018)	(0.021)	(0.057)	(0.032)	(0.053)	(0.028)
Fuel for Cooking	0.178	0.155	0.274	0.188	0.172	0.155	0.168	0.152	0.229	0.145	0.074	0.188
(1=Not Firewood 0=Other)	(0.033)	(0.021)	(0.019)	(0.027)	(0.038)	(0.023)	(0.018)	(0.018)	(0.030)	(0.021)	(0.036)	(0.018)
Ownership of house	0.060	(01021)	(0.01))	0.080	0.076	(0.020)	0.102	0.077	(0.020)	(0.021)	(0.020)	0.087
(1=Private 0=Others)	(0.021)			(0.042)	(0.035)		(0.022)	(0.019)				(0.021)
Having Micro Credit	(01021)	0.129		0.098	0.165	0.209	0.069	-0.106		0.045	0.227	0.304
The might be of the second		(0.073)		(0.036)	(0.050)	(0.045)	(0.023)	(0.049)		(0.022)	(0.060)	(0.111)
Household Size	-0.287	-0.247	-0.261	-0.314	-0.330	-0.254	-0.277	-0.378	-0 249	-0.250	-0.209	-0.293
	(0.018)	(0.033)	(0.026)	(0.025)	(0.021)	(0.027)	(0.025)	(0.021)	(0.017)	(0.015)	(0.019)	(0.018)
Household Size Squared	0.017	0.012	0.014	0.019	0.021	0.014	0.016	0.026	0.014	0.015	0.012	0.016
Household Size Squared	(0.001)	(0.012)	(0.002)	(0.002)	(0.002)	(0.003)	(0.003)	(0.020)	(0.001)	(0.001)	(0.012)	(0.002)
Age of the head of household	0.010	0.013	0.004	0.012	(01002)	(0.000)	0.012	(0.002)	0.009	0.007	0.004	0.007
rige of the neud of nousehold	(0.004)	(0.005)	(0.001)	(0.012)			(0.012)		(0.004)	(0.007)	(0.001)	(0.004)
Age of the head of household	(0.001)	(0.005)	(0.001)	(0.001)			(0.001)		(0.001)	(0.005)	(0.001)	(0.001)
Squared	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000
Squarea	(0,000)	(0,000)		(0,000)	(0,000)	(0,000)	(0,000)	(0,000)	(0,000)	(0,000)		(0,000)
Head of household gender	0.153	0.193	0 109	0.092	0.098	0.171	0.153	(0.000)	0.070	0.145	0 101	0.135
(1=Male 0=Female)	(0.037)	(0.073)	(0.057)	(0.026)	(0.037)	(0.049)	(0.040)		(0.024)	(0.029)	(0.038)	(0.036)
Head of household is Married	0.166	(0.075)	(0.057)	(0.020)	-0.066	-0.086	(0.010)		(0.021)	(0.02))	(0.050)	0.119
	(0.083)				(0.034)	(0.050)						(0.068)
Head of household is Male*Married	-0.207	-0.141			(01001)	(0.020)	-0.074			-0.060	-0.075	-0.230
	(0.089)	(0.071)					(0.038)			(0.026)	(0.035)	(0.076)
Sector of HH Head is Agriculture	(0.00))	-0.066			-0.071		(0.050)		-0.080	(0.020)	(0.055)	-0.138
Sector of first field is Agriculture		(0.021)			(0.071)				(0.021)			(0.058)
Sector of HH Head is Industry	0.240	(0.021)	-0.060	0.105	(0.022)			-0.121	(0.021)	-0.108	-0.101	-0.110
Sector of first field is industry	(0.073)		(0.029)	(0.020)				(0.019)		(0.031)	(0.044)	(0.036)
Sector of HH Head is Service	0.248		(0.02))	0.145	0.098	0 107	0.053	(0.01))		0.089	(0.011)	-0.065
Sector of first field is betvice	(0.028)			(0.021)	(0.027)	(0.020)	(0.019)			(0.026)		(0.003)
Sector of HH Head is in Formal	(0.020)		0.082	(0.021)	(0.027)	0.026	0.076	0.058	0.056	0.083	0.080	0.040
Sector			(0.002)			(0.030)	(0.018)	(0.018)	(0.030)	(0.031)	(0.031)	(0.070)
Sector of HH Head is in Informal	0.045		0.045			(0.017)	(0.010)	(0.010)	0.077	0.051	0.1/0	(0.020)
Sector	(0.073)		(0.023)						(0.077)	(0.021)	(0.020)	
Education Attainment of HH Head	0.053	0.152	(0.023)	0.031	0.061	0.183	0.041	0.115	0.053	(0.020)	0.020)	
Loucation Attainment of HH Head	0.033	0.132		0.031	0.001	0.103	0.041	0.115	0.055		0.005	

is Elementary School	(0.023)	(0.040)		(0.028)	(0.025)	(0.035)	(0.018)	(0.028)	(0.019)		(0.032)	
Education Attainment of HH Head	0.072	0.164	0.198	0.166	0.153	0.164	0.128	0.204	0.099	0.081	0.080	0.156
is Junior School	(0.027)	(0.040)	(0.031)	(0.032)	(0.028)	(0.036)	(0.026)	(0.054)	(0.030)	(0.016)	(0.031)	(0.035)
Education Attainment of HH Head	0.096	0.194	0.143	0.140	0.113	0.088	0.198	0.317	0.099	0.129	0.170	0.196
is Senior +	(0.033)	(0.045)	(0.032)	(0.051)	(0.036)	(0.045)	(0.032)	(0.035)	(0.035)	(0.020)	(0.036)	(0.053)
Number of children 0-4	-0.043							-0.078	-0.029	-0.044		-0.028
	(0.011)							(0.017)	(0.013)	(0.010)		(0.016)
Number of Children in Elementary												
School		0.050		0.050	0.096	0.072	0.045	0.072				
Number of Children in Junior		0.056		0.050	0.080	(0.072)	0.045	0.075				
H.SCHOOI Number of Children in Senior		(0.022)	0.060	(0.018)	(0.020)	(0.019)	(0.017)	(0.020)		0.020	0.040	0.100
H School		(0.070)	(0.009)	(0.024)	(0.024)	(0.024)	(0.022)	(0.015)		(0.029)	(0.019)	(0.012)
Highest Education Attainment of	0.053	(0.023)	(0.017)	(0.024)	(0.024)	(0.024)	0.105	0.133	0.064	(0.014)	0.063	(0.012)
HH Members is Elementary School	(0.023)	(0.040)			(0.025)	(0.040)	(0.028)	(0.054)	(0.026)		(0.003)	(0.031)
Highest Education Attainment of	0.023)	0.058	0.113	0.122	0.153	0.164	0.028)	0.221	0.120	0.081	0.050	0.170
HH Members is Junior School	(0.077)	(0.038)	(0.083)	(0.034)	(0.028)	(0.036)	(0.030)	(0.032)	(0.035)	(0.016)	(0.024)	(0.051)
Highest Education Attainment of	0.110	0.135	0.211	0 317	0.267	0.281	0.133	0.310	0.170	0.129	0.109	0.231
HH Members is Senior +	(0.033)	(0.044)	(0.082)	(0.044)	(0.042)	(0.043)	(0.035)	(0.054)	(0.041)	(0.020)	(0.032)	(0.039)
Dependency Ratio	(0.055)	-0.039	-0.034	-0.027	(0.012)	-0.075	(0.055)	(0.051)	-0.034	-0.022	-0.040	-0.074
Dependency runo		(0.018)	(0.015)	(0.016)		(0.017)			(0.014)	(0,009)	(0.011)	(0.018)
Distance to District		-0.004	-0.025	(01010)	-0.003	-0.004	-0.007		(01011)	(0.00))	-0.004	-0.004
		(0.001)	(0.010)		(0.001)	(0.001)	(0.001)				(0.000)	(0.002)
Existence of SD		-0.224	0.183		(,	(,	()	-1.438			0.093	(,
		(0.040)	(0.102)					(0.057)			(0.041)	
Existence of SLTP	-0.150	· · · ·	-0.051	-0.088	0.041				0.053			
	(0.019)		(0.028)	(0.020)	(0.017)				(0.016)			
Existence of Puskesmas/Pustu	-0.047	-0.116	0.100	0.032							0.049	0.038
	(0.020)	(0.024)	(0.031)	(0.017)							(0.020)	(0.019)
Existence of Polindes	-0.054	-0.114			-0.048					0.029		
	(0.017)	(0.028)			(0.016)					(0.015)		
Existence of Posyandu	-0.062	-0.081			-0.184				0.174		-0.205	
	(0.018)	(0.040)			(0.073)				(0.038)		(0.038)	
Availability of Doctor						-0.050	-0.080	0.092				0.085
						(0.021)	(0.018)	(0.023)				(0.025)
Availability of Bidan	0.082	0.089	-0.144		-0.065	0.072	0.093				-0.068	0.084
	(0.025)	(0.035)	(0.068)		(0.027)	(0.036)	(0.034)				(0.021)	(0.025)
Road type is Asphalt	0.101	0.132	-0.280	0.137	-0.042	0.053			-0.114	0.057		-0.247
	(0.015)	(0.023)	(0.057)	(0.018)	(0.018)	(0.017)			(0.018)	(0.015)		(0.066)
Existence of Semi permanent market			0.276	0.049			0.065		-0.090		-0.099	0.048
place			(0.098)	(0.021)			(0.018)		(0.018)		(0.034)	(0.021)
Existence of Credit Facility		0.055						-0.072	-0.040	-0.031	-0.185	
	12.020	(0.022)	10 101	10 110	12 207	10.754	10.244	(0.018)	(0.017)	(0.014)	(0.022)	12.000
Constant	12.839	12.884	12.131	12.119	13.287	12./56	12.344	14.008	12.577	12.852	13.082	13.098
	(0.106)	(0.150)	(0.218)	(0.123)	(0.127)	(0.076)	(0.131)	(0.149)	(0.109)	(0.082)	(0.087)	(0.118)
Observations Descriptions	1920	2239	1824	2112	2208	2208	2208	2496	2016	1824	1920	2208
N-Squared	0.000	0.284	0.480	0.437	0.430	0.303	0.4/1	0.310	0.474	0.330	0.478	0.383

Notes: Each column reports the result from a separate regression for that district. The dependent variable is log per capita consumption. Following standard BPS procedure, for each district, a first regression was run with all variables listed. A second regression was then run retaining only those variables that were statistically significant at the 10% level in the first regression. The results above present the results of this second regression, which were used for the PMT calculation. All variables above are statistically significant at the 10% level.

Appendix Table 2	: Testing Balance	Between	Treatment	Groups
-------------------------	-------------------	---------	-----------	--------

	Means			Differences, No Fixed Effects			Differences, Controlling for Stratum Fixed Effects		
	PMT	Community	Hybrid	Community - PMT	Hybrid - PMT	Hybrid - Community	Community - PMT	Hybrid - PMT	Hybrid - Community
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Average per capita expenditure (Rp. 000s)	558.576	550.579	564.295	-7.997	5.719	13.716	-1.331	11.980	13.312
	[245.845]	[220.237]	[337.172]	(22.728)	(28.535)	(27.416)	(20.661)	(25.973)	(24.913)
Average years of education of household	7.360	7.566	7.087	0.206	-0.273	-0.4785*	0.219	-0.255	-0.4739**
head among survey respondents	[2.616]	[2.644]	[2.627]	(0.256)	(0.254)	(0.254)	(0.204)	(0.200)	(0.209)
PMT score	12.467	12.519	12.474	0.052	0.007	-0.045	0.053	0.011	-0.043
(calculated from Baseline survey)	[0.436]	[0.414]	[0.423]	(0.041)	(0.042)	(0.040)	(0.037)	(0.037)	(0.037)
Pct. of households that are agricultural	45.827	42.887	48.438	-2.940	2.612	5.5515*	-3.7806*	1.264	5.0442**
	[34.889]	[33.789]	[35.038]	(3.343)	(3.391)	(3.318)	(2.060)	(2.096)	(2.027)
Years of education of RT head	8.856	8.860	8.604	0.003	-0.253	-0.256	0.033	-0.206	-0.238
	[4.018]	[4.244]	[3.796]	(0.402)	(0.379)	(0.388)	(0.352)	(0.336)	(0.335)
Log number of households	3.832	3.895	3.810	0.063	-0.022	-0.0853*	0.057	-0.028	-0.0846**
	[0.491]	[0.489]	[0.460]	(0.048)	(0.046)	(0.046)	(0.044)	(0.043)	(0.041)
Distance to kecamatan in km	0.444	0.416	0.482	-0.028	0.039	0.067	-0.029	0.038	0.0673*
	[0.652]	[0.473]	[0.431]	(0.056)	(0.054)	(0.044)	(0.050)	(0.046)	(0.037)
Log size of villages in hectares	3.105	3.271	3.282	0.166	0.177	0.011	0.1435*	0.1376*	-0.006
	[1.278]	[1.197]	[1.187]	(0.121)	(0.120)	(0.115)	(0.075)	(0.075)	(0.076)
Religious building per household	0.0070	0.0060	0.0060	-0.0004	-0.0004	-0.0001	-0.0004	-0.0005	-0.0001
	[0.0050]	[0.0050]	[0.0050]	(0.0005)	(0.0005)	(0.0005)	(0.0004)	(0.0004)	(0.0003)
Primary school per household	0.0030	0.0030	0.0030	0.0001	-0.0002	-0.0003	0.0000	-0.0002	-0.0003
	[0.0030]	[0.0030]	[0.0020]	(0.0003)	(0.0002)	(0.0002)	(0.0002)	(0.0002)	(0.0002)
P-value from joint test				0.275	0.689	0.089	0.165	0.322	0.028

Notes: An observation is a sub-village, and therefore, there are 640 observations. Standard deviations are shown in brackets in columns (1) - (3); robust standard errors are shown in parentheses in columns (4) - (9).

Appendix Table 3: Results of Different Targeting Methods on Error Rate - Time elapsed between survey and targeting

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		By Incon	ne Status		By Detailed	Income Status		Per-capita
Sample:	Full	Inclusion	Exclusion	Rich	Middle	Near Poor	Very Poor	consumption of
-	population	Error	Error		income		-	beneficiaries
Community treatment	0.088	0.098	0.042	0.090	0.102	0.127	-0.072	68.008
	(0.072)	(0.074)	(0.129)	(0.086)	(0.111)	(0.170)	(0.178)	(78.501)
Hybrid treatment	0.018	0.074	-0.226*	0.023	0.117	-0.252	-0.227	5.139
	(0.072)	(0.071)	(0.125)	(0.081)	(0.108)	(0.166)	(0.176)	(90.750)
Time elapsed	0.000	-0.000	0.001	-0.001	-0.000	0.004	-0.002	0.759
-	(0.001)	(0.001)	(0.002)	(0.002)	(0.002)	(0.003)	(0.003)	(1.552)
Time elapsed x	-0.001	-0.001	-0.001	-0.001	-0.001	-0.003	0.002	-1.358
Community Treatment	(0.002)	(0.002)	(0.003)	(0.002)	(0.003)	(0.004)	(0.004)	(1.852)
Time elapsed x	0.000	-0.001	0.005	0.000	-0.001	0.005	0.005	-0.322
Hybrid Treatment	(0.002)	(0.002)	(0.003)	(0.002)	(0.003)	(0.004)	(0.004)	(2.049)
Observations	5595	3617	1978	1791	1826	1052	926	1687
Mean in PMT treatment	0.30	0.18	0.52	0.13	0.23	0.55	0.48	366

Notes: All regressions include stratum fixed effects. Robust standard errors are shown in parentheses, adjusted for clustering at the village level. All coefficients are interpretable relative to the PMT treatment, which is the omitted category. The mean of the dependent variable in the PMT treatment is shown in the bottom row. All specifications include stratum fixed effects. *** p<0.01, ** p<0.05, * p<0.1

Appendix Table 4: Results of Different Targeting Methods on Error Rate – Heterogeneity for Java/Non-Java

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		By Incor	ne Status		By Detailed Ir	ncome Status		Per-capita
Sample:	Full	Exclusion Error	Inclusion Error	Rich	Middle income	Near Poor	Very Poor	consumption of
	population							beneficiaries
COMMUNITY	0.038*	0.055**	0.017	0.048**	0.066*	0.058	-0.030	26.028
	(0.022)	(0.023)	(0.040)	(0.024)	(0.035)	(0.051)	(0.062)	(23.419)
HYBRID	0.021	0.016	-0.001	0.034	-0.001	0.025	-0.024	-3.088
	(0.021)	(0.020)	(0.038)	(0.023)	(0.032)	(0.051)	(0.057)	(22.716)
COMMUNITY × Java	-0.016	-0.026	0.012	-0.047	-0.012	-0.016	0.035	-26.834
	(0.033)	(0.037)	(0.056)	(0.043)	(0.053)	(0.075)	(0.080)	(36.993)
HYBRID × Java	0.019	0.053	0.016	-0.032	0.127**	0.010	0.027	2.673
	(0.032)	(0.036)	(0.054)	(0.043)	(0.051)	(0.075)	(0.075)	(37.739)

Notes: All regressions include stratum fixed effects. Robust standard errors are shown in parentheses, adjusted for clustering at the village level. All coefficients are interpretable relative to the PMT treatment, which is the omitted category. The mean of the dependent variable in the PMT treatment is shown in the bottom row. All specifications include stratum fixed effects. *** p<0.01, ** p<0.05, * p<0.1

Transfer Size		Poverty line = Poor				Poverty line = Very poor		
(Rp. 000s)		PMT	Community	Hybrid		PMT	Community	Hybrid
No transfer	headcount	33.86	33.86	33.86		15.64	15.64	15.64
	pov. gap	9.45	9.45	9.45		3.55	3.55	3.55
	sq. pov gap	3.73	3.73	3.73		1.21	1.21	1.21
50	headcount	33.07	32.91	33.41		15.11	14.69	14.74
	pov. gap	8.96	8.92	8.96		3.22	3.17	3.22
	sq. pov gap	3.46	3.42	3.44		1.06	1.03	1.05
100	headcount	31.73	32.11	32.19		14.17	13.78	13.89
	pov. gap	8.43	8.43	8.42		2.88	2.84	2.88
	sq. pov gap	3.18	3.14	3.15		0.93	0.89	0.90
200	headcount	29.66	30.09	30.32		12.46	12.13	12.44
	pov. gap	7.53	7.56	7.54		2.40	2.34	2.35
	sq. pov gap	2.74	2.70	2.70		0.75	0.68	0.69
500	headcount	24.24	25.24	25.53		8.86	9.19	9.25
	pov. gap	5.78	5.89	5.87		1.70	1.59	1.62
	sq. pov gap	2.03	1.99	1.98		0.54	0.45	0.46

Appendix Table 5: Simulated poverty impacts after subtracting targeting costs .

Note that these results are very similar to the main targeting results because the differences in targeting costs are small relative to the transfers considered here. Note that the transfer sizes above are monthly transfers in Rp. 000s. Assuming that targeting is done once per year, so the one-time cost of targeting is amortized over twelve monthly transfers, the costs of targeting per beneficiary are Rp. 7,000 for PMT, Rp. 3,100 for community, and Rp. 8,000 for hybrid.

Appendix Table 6: Are elite results driven by social connections?

	(1)	(2)	(3)	(4)
]	Error	On beneficia	ry list dummy
Elite connectedness	-0.034	-0.034	-0.078***	-0.078***
	(0.021)	(0.021)	(0.023)	(0.023)
Connectedness	0.041*	0.041*	0.067***	0.067***
	(0.023)	(0.023)	(0.022)	(0.022)
Elite connectedness	-0.010	-0.002	-0.064*	-0.075**
\times community treatment	(0.035)	(0.039)	(0.034)	(0.037)
Elite connectedness	0.003	-0.004	-0.022	-0.010
\times hybrid treatment	(0.034)	(0.036)	(0.034)	(0.037)
Elite connectedness	-0.032	-0.050	0.040	0.062
\times elite treatment	(0.031)	(0.047)	(0.031)	(0.043)
Elite connectedness		0.030		-0.050
\times elite treatment \times hybrid		(0.064)		(0.061)
Connectedness	-0.002	-0.026	0.008	0.019
\times community treatment	(0.038)	(0.043)	(0.036)	(0.041)
Connectedness ×	0.041	0.064	0.055	0.042
hybrid treatment	(0.037)	(0.041)	(0.035)	(0.037)
Connectedness ×	-0.000	0.043	-0.004	-0.029
elite treatment	(0.035)	(0.051)	(0.032)	(0.047)
Connectedness \times elite treatment \times		-0.090		0.050
hybrid treatment		(0.071)		(0.065)
Observations	5753	5753	5756	5756

Notes: All specifications include dummies for the community, hybrid, and elite treatment main effects, as well as stratum fixed effects; columns (2) and (4) also include a dummy for elite \times hybrid. Robust standard errors in parentheses, adjusted for clustering at the village level. Dependent variable in columns (1) and (2) is the mis-target dummy for the full sample, as in column (1) of Table 4. Dependent variable in columns (3) and (4) is a dummy for being a beneficiary of the program. *** p<0.01, ** p<0.05, * p<0.1

Appendix Table 7: Rank correlation matrix of alternative welfare metrics

	(1)	(2)	(3)	(4)
		Community survey	Sub-village head	Self-Assessment
	Consumption (r_g)	ranks (r_c)	survey ranks(r_e)	(r_s)
Consumption (r_g)	1.000			
Community survey ranks (r_c)	0.376	1.000		
Sub-village head survey ranks (r_e)	0.335	0.746	1.000	
Self-Assessment(r_s)	0.264	0.447	0.407	1.000

Notes: This table reports the correlation matrix between the within-village ranks of the four variables listed. All correlations are statistically significantly different from 0 at the 1% level.