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Abstract

This Appendix collects: the second, neoclassical application of our model; the details of the robustness

exercises discussed in Section 5; and a variety of auxiliary results.

A A Neoclassical Application

Our primary application, spelled out in Section 6, concerns monetary policy and output gaps in a Keyne-

sian economy. The micro-foundation offered here differs in its approach (Neoclassical), policy instrument

(taxation), and key decision (investment).

A.1 Primitives

There are three periods, t ∈ {0,1,2}. A continuum of firms or entrepreneurs, i ∈ [0,1], choose investment

at t = 1. Investment is an intermediate input that enters the production of a final good at t = 2, along

with the labor supply by a representative worker. The first period, t = 0, identifies only the time of policy

announcement. We now review each of these ingredients in turn.

Final good production at t = 2. The final-good firm operates at t = 2. Define the following constant

elasticity of substitution (CES) aggregator of the intermediate goods

X ≡
(∫

x
1− 1

ε

i di

) ε
ε−1

(71)

where ε ∈ (1,∞) is the inverse elasticity of substitution. The final goods firm operates with a Cobb-Douglas

technology over this intermediate and labor with capital share α:

Q = XαN 1−α (72)
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The firm operates competitively and has the following revenue

Q −w N −
∫

pi xi di (73)

where w is the wage and the (pi )i∈[0,1] are the prices of the intermediates.

The final goods firm’s demand for intermediates is

pi =αQX
1
ε
−1x

− 1
ε

i (74)

and their demand for labor is

w = (1−α)
Q

N
(75)

Representative worker. A representative worker lives only in period t = 2. They consume at level Cw and

supply N hours of labor, to maximize their utility, given by

Uw = logCw − 1

1+φN 1+φ (76)

where φ > 0 parameterizes the Frisch elasticity of labor supply. Their income equals the sum of labor

earnings, taxed at rate z, and a transfer T :

Cw ≤ w(1− z)N +T

The transfer rebates the tax, or T = zw N . Labor supply has the following simple form:

w(1− z) = NφCw (77)

which, combined with (75), fully characterizes the labor market.

Entrepreneurs and investment at t = 1. At t = 1, the entrepreneur is endowed with one unit of the final

good, which they choose how to allocate between current consumption, ci ,1, and investment, xi , into

the next-period production of an intermediate good. The technology is linear, and the productivity is

set to one for simplicity, so the quantity of the intermediate good produced and sold at t = 2 is also xi .

The entrepreneur’s consumption at t = 2 is given by the proceeds of selling the intermediate good, or

ci ,2 = pi xi . His preferences are linear:

Ue = ci ,1 + ci ,2

It follows that

Ue = 1−xi +pi xi .

where pi is given by (74). The entrepreneur therefore chooses investment, xi , so as to maximize the net

payoff pi xi −xi , subject to (74). This yields the following optimality condition:

x
1
ε

i =α(1−ε−1)Ei

[
Xα+ 1

ε
−1N 1−α

]
(78)
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Policy preferences. For simplicity, the policymaker cares only about the representative worker’s welfare

but cannot directly transfer consumption from the entrepreneurs to the worker. Instead, she must use

the single available tax instrument, the proportional tax on the second-period final good, to balance two

objectives: encourage investment by the entrepreneurs so as to increase aggregate the consumption of

workers; and collect tax revenue so as to pay for a public good.

The policymaker wishes to maximize the utility of the worker, but also has an external value for tax

revenues r w N . Assume that external benefit is linearly separable in the policymaker’s preferences, has

a log functional form, and has weight ξ relative to the worker’s welfare. The policymaker thus wishes to

maximize

W = logCw − N 1+φ

1+φ +ξ log(r w N ). (79)

The primitive shock of interest in our model will be ξ, which is a pure shifter of the policymaker’s prefer-

ences.

Objective (79) can be justified as follows. Let the underlying government budget constraint take the

form r w N ≥ g , where g is the exogenous and random level of government spending. Provided that g

is bounded away from zero, we can re-write this constraint as log(r w N ) ≥ log g . This yields (79) as the

Lagrangian of this problem, with ξ being positive and increasing in g . And since there is a one-to-one

mapping between g and ξ, we can treat the latter as the “fundamental” for our purposes.

A.2 Benchmark with REE and Optimal Policy

Assume rational expectations. Let us first characterize implementable equilibria indexed by the tax rate z.

In such an equilibrium, the agent will conjecture that x−i = xi ≡ X . Since everything is now known, we can

pull X out of the expectation and solve to get

Xi = X = (α(1−ε−1))
1

1−α N

It is immediate that output is linear in labor:

Q = X ηN 1−η = (α(1−ε−1)))
α

1−α N

and finally note from the worker’s budget constraint that consumer income equals consumer spending, or

Cw = w N = (1−α)Q.

Setting labor supply to labor demand gives

N = (1− z)
1

1+φ (80)

which corresponds to output level

Q = (α(1−ε−1)))
α

1−α (1− z)
1

1+φ (81)

and investment level

Xi = X = (α(1−ε−1))
1

1−α (1− z)
1

1+φ
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The policymaker chooses one of the implementable allocations, as described by (80) and (81), to max-

imize its objective function (79). We appeal to standard arguments to write the problem in the “dual”

form as a function of the policy instrument. Substituting out the production function gives the following

representation of the policy problem:

max
r

{
(1+ξ) log

(
(1−α)XαN 1−α)− N 1+φ

1+φ +ξ log((1−α)z)

}
(82)

and further substituting in the implementability constraints for (X , N ) gives the following up to constants:

max
z

{
(1+ξ) log(1− z)+ z +ξ(1+φ) log z

}
(83)

The first-order condition is

1+ ξ(1+φ)

z
= (1+ξ)

1− z
(84)

There are two solutions to this, and the relevant one that corresponds to a minimum of the objective is

z∗(ξ) = 1

2

(√
ξ2(2+φ)2 +4(1+φξ)−ξ(2+φ)

)
(85)

which increases in ξ, the government’s preference for raising revenue.

A.3 Forward Guidance

At t = 0, the policymaker learns its preference shifter ξ and decides to levy a tax or subsidy. They have

two options. The first is to announce and commit to a fixed level of the tax z at t = 2. The second is to

commit to a given level of output, and adjust ex post the tax such that, for a pre-determined level of the

capital stock, the output target is met. Observe that, under rational expectations, the two approaches are

equivalent; but under non-rational expectations they may differ.

A.4 Mapping to the Abstract Behavioral Equations

Now consider a more general model in which agents do not form rational expectations, because of either

limited information or various behavioral biases. The fixed-point equation (78) can no longer be solved

without expectations. To make progress, we will take log-linear approximations around a case in which

the government preference shock is at a steady-state value, or ξ = ξ̄, and the tax is set at the (rational-

expectations-implementation) optimum that achieves the second-best, or z = z̄ = z∗(ξ̄). Let (Q̄, N̄ , X̄ )

denote output, labor, and investment evaluated at this point. Let Y = logQ − logQ̄, ki = (log xi − log X̄ ),

K = ∫
i ki di , and n = log N − log N̄ be log deviations of the first two quantities. Further, define

τ= 1

1+φ log

(
1− z

1− z̄

)
≈− 1

1+φ (z − z̄)

as a convenient transformation of the tax, which is higher when the tax is relatively low and lower when

the tax is relatively high.

Aggregate production is log-linear, or Y = (1−α)n+αK . And, up to log deviations, labor is the same as

the rescaled tax: n = τ. Hence we recover the abstract model’s equation
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Y = (1−α)τ+αK (86)

in which α has a structural interpretation as the capital share of income. The direct effect of policy, with

weight 1−α, comes entirely through the expansion of labor demand.

Let us now turn to the investment decision (78). To a log-linear approximation, it is

ki = εEi [Y ]+ (1−ε)Ei [K ]

After substituting in equilibrium K from the production function, this simplifies to

ki =
(
1−γ)

Ei [τ]+γE[Y ] (87)

for feedback parameter

γ≡ 1

α
−ε

(
1

α
−1

)
(88)

This parameter is in the domain (−∞,1], reaching the latter for ε= 1. It is positive if and only if ε< 1+α,

or the aggregate demand externality is sufficiently strong relative a threshold that decreases in the capital

share of income. Economically this means that the force of the aggregate demand externality, which works

only through the accumulation of capital in the model, offsets the GE force of resource scarcity in the labor

market.

A.5 Policy Objective

We approximate objective (79) around the aforemenioned steady-state with the second-best policy. This

results in the following loss function:

(1+ξ)(Y −Y ∗)2 + (1+φ)2 (
φ(1− r̄ )+ξ(1− r̄ )2)

)
(τ−τ∗)2 (89)

which maps to our abstract problem for target weight

χ≡ 1+ξ
(1+φ)2(φ(1− r̄ )+ξ(1− r̄ )2)+1+ξ (90)

and ideal points

Y ∗ = τ∗ = θ ≡ (1− z∗(ξ))
1

1+φ (91)

The policymaker cares both about hitting the second-best level of output and the second-best level

of the policy instrument. The former measures the payoffs to the policymaker via both the household’s

consumption and the additional amount of tax revenue for a fixed tax rate. The latter measures the benefit

of setting the right tax and not additionally distorting labor supply relative to the second-best benchmark.
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B Level-k Thinking

The key mechanism in the main analysis is agents’ under-forecasting of others’ responses to the policy

message: as demonstrated in Lemma 2, Ē[K ] moves less than K in response to variation in X̂ . One could

recast this as the consequence of agents’ bounded ability to calculate others’ responses or to comprehend

the GE effects of the policy.

A simple formalization of such cognitive or computational bounds is Level-k Thinking. This concept

represents a relaxation of the part of Assumption 3 that imposes common knowledge of rationality: agents

play rationally themselves, but question the rationality of others. In particular, this concept is defined re-

cursively by letting the level-0 agent make an exogenously specified choice (this is the completely irrational

agent), the level-1 agent play optimally given the belief that others are level-0 (this agent is rational but be-

lieves that others are irrational), the level-2 agent play optimally given the belief that others are level-1,

and so on, up to some finite order k. Level-k Thinking therefore imposes a pecking order, with every agent

believing that others are less sophisticated than herself in the sense that they base their beliefs on fewer

iterations of the best responses than she does.

To see the implications of this concept in our context, assume all agents think to the same order k ≥ 1

and let the “base case” (level-0 behavior) correspond to K = 0. Because level-k agents believe that all other

agents are of cognitive order k −1, the expectation of K is now given by

Ē[K ] = (1−δX )
k−1∑
h=0

(δX )h X̂ = (1− (δX )k )X̂ . (92)

For even k and δX ∈ (−1,1), this always implies a dampened response of beliefs to the fundamental. Out-

comes K = ((1−δX )+δX (1−(δX )k ))X̂ have dampened response to X̂ for δX > 0 and amplified response for

δX < 0. These distortions remain monotone in the extent of strategic interaction in either direction, |δX |.
Intuitively, higher |δX | puts higher weight on agents’ faulty reasoning. As such our core results readily

extend to this case.

The equivalence, however, breaks down for any odd number k because Level-k Thinking displays a

peculiar, “oscillatory” behavior in games of strategic substitutability. In our context, this problem emerges

with target communication, precisely because this induces a game of strategic substitutability.

Let us explain. For any given announcement, an agent wants to invest more when he expects others

to investment less. Because the level-0 agent is assumed to be completely unresponsive, a level-1 agent

expects K to move less than in the frictionless benchmark and thus moves more himself. A level-2 agent

then expects K to move more than in the frictionless benchmark and therefore chooses to move less him-

self. That is, whereas k = 0 amplifies the actual response of investment relative to rational expectations,

k = 1 attenuates it. The left panel of Figure 1 shows that this oscillatory pattern continues for higher k,

and that this oscillation with target communication is the only qualitative difference between the present

specification and that studied as our baseline.

We are not aware of any experimental evidence of this oscillatory pattern. We suspect that it is an unin-

tended “bug” of a solution concept that was originally developed and tested in the experimental literature
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Figure 1: The implementability coefficients µτ and µY under Level-k Thinking (left) and our main specifi-

cation (right).

primarily for games of strategic complementarity and may not be applicable to games of strategic substi-

tutability without appropriate modification. Seen from this perspective, the formalization adopted in the

main text captures the essence of Level-k Thinking while bypassing its “pathological” feature.

The same goal can be achieved with a “smooth” version of Level-k Thinking along the lines of Garcıa-

Schmidt and Woodford (2019). The concept of “cognitive discounting” introduced in Gabaix (2020) works

in a similar manner, too, because it directly postulates that the subjective expectations of endogenous

variables such as K move less than the rational expectations of it.

C Communicating Other Objects

Our focus on communicating τ or Y seemed natural for applications. But, for completeness, we discuss

here the possibilities of committing to a target for the aggregate action K or communicating the realized

value of θ along with (or perhaps instead of) a policy plan.

C.1 Communicating a target for K

Consider the scenario in which the policymaker commits to a target for K , instead of a value for τ or Y .

This option may be impractical if K stands for a complex set of decisions that is hard to measure. But even

abstracting from such measurement issues, this option is not well-posed in our model.

Consider in particular the specification studied in Section 3.3 and let the policymaker announce and

commit to a value K̂ for aggregate investment. Assume that first-order beliefs about investment are correct

(Ē[K ] = K̂ ) and higher-order beliefs are sticky around zero (Ēh[K ] = λh−1K̂ ). For the announcement to be

fulfilled in equilibrium, it must be the case that

K̂ = (1−δX )Ē[X ]+δX Ē[K ] = (1−δX )Ē[X ]+δX K̂
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for either fundamental X ∈ {τ,Y }. The only first-order beliefs compatible with this announcement, then,

are Ē[τ] = Ē[Y ] = Ē[K ] = K̂ : on average (and, in fact, uniformly), agents believe that equilibrium will be

τ= Y = K . This is an ideal scenario for the policymaker.

It turns out, however, that a rational agent who doubts the attentiveness of others will doubt that other

agents play the announcement, or that K = K̂ . If a given agent i thinks that agent j plays k j = K̂ , she is

implicitly taking a stand on agent j ’s beliefs about τ and Y . Specifically, agent i believes that agent j is

following her best response (here, written with X = τ ), namely

Ei [k j ] = (1−δτ)EiE j [τ]+δτEiE j [K ]

We have assumed that Ei [k j ] = K̂ and EiE j [K ] = λK̂ . This produces the following restriction on second-

order beliefs about τ:

EiE j [τ] = 1−λδτ
1−δτ

K̂ .

This has a simple interpretation: to rationalize aggregate investment being K̂ despite the fact that fraction

(1−λ) of agents were inattentive to the announcement, agent i thinks that a typical other agent has over-

forecasted the policy instrument τ.

At the same time, agent i knows that, like himself, all attentive agents expect τ to coincide with K̂ . And

since agent i believes that the fraction of attentive agents is λ, the following restriction of second-order

beliefs also has to hold:

EiE j [τ] =λK̂ .

When λ = 1 (rational expectations), the above two restrictions are jointly satisfied for any K̂ . When

instead λ< 1, this is true only for K̂ = 0. This proves the claim made in the text that, as long as λ< 1, there

is no equilibrium in which is infeasible to announce and commit to any K̂ other than 0 (the default point).

In a nutshell, the problem with communicating K is that the policymaker has no direct control over

it. From this perspective, output communication worked precisely because the policymaker had some

plausible commitment. Agents could rationalize Y = Ŷ regardless of their beliefs about K because there

always existed some level of τ that implemented Ŷ .

C.2 Expanding the message space

Return to the case in which the policymaker commits to a value for τ or Y (conditional on θ), but allow her

to provide an additional message of the form

m = aθ+bε

where a,b ∈ R and ε is an arbitrary random variable. This could capture a perfect or imperfect signal of

the fundamental, a “justification for the policy choice,” or some other arbitrary message. Let Assumption

4 apply to the vector (θ, X ).

It is obvious that the additional message plays no role in the best response (7) or the expansion (23);

does not enter the expression for K ; and thus does not affect the implementability constraint. Hence the

implementable sets are the same as the ones given for instrument and target communication in Proposi-

tion 1. The messages provide no extra flexibility.
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C.2.1 Communicating only θ

What about communicating a message without a policy plan? In particular, what if the policymaker com-

municates only the value of θ? In general, agents may have no idea what θ means, or how to map its

announced value to an expectation for τ and Y . So, unless additional assumptions are made, this scenario

is ill-posed.

One way to close this scenario is to assume that the agents have knowledge of the policymaker’s entire

problem, namely her objective as given in (3), her set of options (pick a value for τ or one for Y ), and

her beliefs about the structure of the economy. The agents could then use this knowledge along with the

announcement of θ to figure out the policymaker’s choices. This would only replicate the outcomes of our

baseline analysis, in a indirect and uninteresting way.

This is is true, of course, insofar as the policymaker’s problem remains the same as in our baseline

analysis: the policymaker is still committing to a value for τ or Y , although “secretly” so. If, instead, the

policymaker lacks commitment, they will expect her to play a different strategy. This takes us to the ter-

ritory of Section G, where we explain why commitment is essential for regulating the bite of bounded

rationality.

D Convergent Higher-Order Beliefs

Most of our analysis restrictsα< 1
2−γ so as to guarantee that−1 < δX < 1 for both form of forward guidance.

The following technical lemma states and verifies this claim:

Lemma D.1. Let γ ∈ (−∞,1] and α ∈ (0,1). The following statements are equivalent: |δX | < 1 for X ∈ {τ,Y };

γ> 2−1/α; and α< 1/(2−γ).

Proof. This is a very simple calculation. Note that δY < 0 for any γ ≤ 1, so δY < 1 is guaranteed. The

condition δY >−1 re-arranges to

δY =−(1−γ)
α

1−α >−1

This re-arranges to 1−γ< 1− 1
α given α ∈ (0,1) and the previous re-arranges to γ> 2−1/α. Finally, solving

forα givesα< 1/(2−γ). Thus we have shown that |δY | < 1, γ> 2−1/α; andα< 1/(2−γ) are interchangeable

statements.

Note next that δτ < 1 is guaranteed by α ∈ (0,1). δτ > −1 requires γ > −1/α. But this is implied by

γ> 2−1/α and hence by δY >−1.

This allows the characterization of beliefs and behavior by repeated iteration of the best responses. In

particular, in Section 3 it guarantees that the joint of Assumptions 2 and 3 replicates the REE benchmark;

in Online Appendix B, it guarantees that the Level-k outcome converges to the REE outcome as agents

become “infinitely rational” (k →∞); and in Sections 3.3 and 5.3, it guarantees that Assumptions 4 and 5

yield the corresponding PBE outcomes. On a more technical level, restricting δY > −1 allows us to main-

tain µY > 0, which is important to the proofs of Theorem 2 and Proposition 3. This is established below:
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Lemma D.2 (Sign of µY ). Fix a value for α and a domain γ ∈G, with 0 ∈G, such that δY >−1. Then µY > 0

on the same domain for all values of λ.

Proof. Note that µY > 0 when κY < 1/α. This reduces the following condition: to

γα(λ−α) < 1−α(2−λ).

Let’s consider three cases of this.

First, assume that λ>α. The above condition can then be rewritten as

γ< 1+ (1−α)2

α(λ−α)
,

which is obviously true for any γ< 1.

Next, consider λ=α. The condition becomes

α(2−α) < 1

which is always true for α=λ ∈ (0,1).

Finally, consider λ<α. In this case, the condition is

γ> 1+α(λ−2)

α(λ−α)

A strictly tighter condition is the same evaluated at λ= 0, which re-arranges to

γ> 1

α

(
2− 1

α

)
(93)

Note then that the restriction δY >−1 encodes the following restriction for fixed α and all γ ∈G :

γ> 2− 1

α
, (94)

as calculated in Lemma D.1. Evaluating this at γ = 0, which is within the domain G over which the con-

dition must apply, gives α < 1/2. When α < 1/2, the right-hand-side of conditions (93) and (94) are both

negative, and (94) implies (93). Clearly, this must apply for all γ ∈ G and α such that (94) holds. This

completes the proof.

We think, for all the reasons above, it is most reasonable to restrict to |δX | < 1. But for completeness

we discuss here what happens otherwise. Consider first an “adversarial” selection of outcome in this case.

This will only strengthen the case for the main results. For −1/α < γ < 2− 1/α, we have δY < −1 and

δτ ∈ (−1,1). Instrument communication would clearly be preferred to prevent arbitrarily poor outcomes

under target communication. To use an analogy which applies directly in our extension that considers

policy rules (Section G), this is like picking a policy that obeys the Taylor principle over one that does

not. For γ < −1/α, we have both δY < −1 and δτ < −1, so theory lacks a clear prediction under either

communication strategy.
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E Connection to Poole (1970)

Our baseline model included exogenous shocks to the preferences of the policymaker but excluded such

shocks from conditions (1) and (2). This is without loss of generality if the other shocks are common

knowledge and observed by the policymaker. These assumptions are extreme, but common in the Ramsey

policy paradigm. In our context, they guarantee that implementability results remain true provided that

the quantities (τ,Y ) are re-defined to be “partialed out” from the extra shocks.

A more plausible scenario, perhaps, is that other shocks are unobserved and the policymaker cannot

condition on them. This introduces into our analysis similar considerations as those in Poole (1970). The

latter focused on how two different policies—fixing the interest rate or fixing the money supply—differed

in their robustness to external shocks. Primitive shocks (to supply and demand) had different effects on

the policy objective (output gap) depending on the slope of the model equations and the policy choice.

Poole could do comparative statics of optimal policy in these slopes as well as the relative variance of the

shocks.

Such “Poole considerations” can be inserted into our framework and will naturally affect the choice be-

tween fixing τ and fixing Y . However, such consideration matter even in the REE benchmark and, roughly

speaking, are separable from the mechanism we have identified in our paper.

Shocks to output. Consider now a model in which output contains a random component:

Y = (1−α)τ+αK +u,

where u is drawn from a Normal distribution with mean 0 and variance σ2
u , is orthogonal to θ, and is

unobserved by both the policymaker and the private agents. In this case, announcing and committing

to a value for Y stabilizes output at the expense of letting the tax distortion fluctuate with u. Conversely,

announcing and committing to a value for τ stabilizes the tax distortion at the expense of letting output

fluctuate with u. It follows that, even in the frictionless benchmark (λ = 1), the policymaker is no more

indifferent between the two. In particular, target communication is preferable if and only if the welfare

cost of the fluctuations in Y exceeds that of the fluctuations in τ, which is in turn is the case whenever χ is

high enough.1

While these possibilities are interesting on their own right, they are orthogonal to the message of our

paper. Indeed, the shock considered above does not affect the strategic interaction of the private agents

under either the form of forward guidance: Lemma 1 remains the same. By the same token, when λ = 1,

the sets of the implementable (τ,Y ) pairs remain invariant to γ, even though they now depend on the

realization of u. It then also follows that, as long as λ = 1, the optimal communication strategy does not

depend on γ.

1The above scenario has maintained that the ideal level of output is Y fb = θ. What if instead Y fb = θ+u? This could correspond

to a micro-founded business-cycle model in which technology shocks that have symmetric effects on equilibrium and first-best

allocations. Under this scenario, it becomes desirable to let output fluctuate with u, which in turn implies that instrument com-

munication always dominates target communication with rational expectations. A non-trivial trade off between the two could

then be recovered by adding unobserved shocks to the tax distortion. The optimal strategy is then determined by the relative

variance of the two unobserved shocks and the relative importance of the resulting fluctuations, along the lines of Poole (1970).
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As soon as λ < 1, the implementability sets and the optimal communication strategy start depend-

ing on γ, for exactly the same reasons as those explained before. To make this more clear, note that the

implementable set for instrument communication is

{
(τ,Y ) : Y =µ−1

τ τ+u
}

which means the policymaker, free to choose announcement τ = rτθ, can implement (τ,Y ) pairs of the

form (rτµ−1
τ θ,rτθ+u).

Consider a policymaker who must commit ex ante, before the realization of θ, to either instrument

or target communication and a mapping from θ to their announcement X̂ . This is a slightly different

assumption than our main analysis, but an appropriate translation of the classic Poole problem. We could

just as easily have assumed contingency on θ but not u, with the minor change that optimal policy now

depends on the realization of θ in place of its ex ante variance.

The appropriate translation of the loss function is

Lτ ≡min
rτ∈R

[
σ2
θ

[
(1−χ)(rτ−1)2 +χ(rτ/µτ−1)2]+χσ2

u

]
where (σ2

u ,σ2
θ

) are the respective variances of u and θ. To re-iterate, were policy contingent on realized θ,

the same would apply with θ2 in place of σ2
θ

.

For target communication, the implementable set is{
(τ,Y ) : τ=µY Y − u

1−α
}

which means that, for announcement Y = rY θ, the policymaker can implement (τ,Y ) pairs of the form

(rY µY θ−u/(1−α),rY θ). The appropriate translation of the loss function is

LY ≡ min
rY ∈R

[
σ2
θ

[
(1−χ)(rY −1)2 +χ(rY /µY −1)2]+ 1−χ

(1−α)2σ
2
u

]]
Note that the extra terms that appear in the loss functions for σ2

u > 0 have no dependence on γ. To map

to the loss functions plotted in Figure 1 as a function of γ, each loss function is shifted above, but neither

“twists” or loses its monotonicity in γ.

Finally, note that in expectation both implementable sets are the same as the ones that are presented

in Theorem 1. This demonstrates Proposition 8. In particular, when λ = 1 and µτ = µY = 1, the imple-

mentable sets are the same as the rational-expectations ones in Proposition 1. This demonstrates Propo-

sition 7.

Measurement errors and trembles. The same logic as above applies if we introduce measurement errors

in the policymaker’s observation of τ and Y , or equivalently trembles in her control of these objects. To see

this, consider a variant of our framework that lets the policymaker control either τ̃ or Ỹ , where

τ̃= τ+uτ, Ỹ = Y +uY ,
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and the u’s are independent Gaussian shocks, orthogonal to θ, and unpredictable by both the policymaker

and the private agents. Instrument communication now amounts to announcing and committing to a

value for τ̃, whereas target communication amounts to announcing and committing to a value for Ỹ .

By combining the above with condition (1), we infer that, under both form of forward guidance, the

following restriction has to hold:

Ỹ = (1−α)τ̃+αK + ũ,

where

ũ ≡−(1−α)uτ+uY .

At the same time, because the u’s are unpredictable, the best response of the agents can be restated as

ki = (1−γ)Ei [τ̃]+γEi [Ỹ ].

This maps directly to the version with unobserved shocks just discussed above if we simply reinterpret τ̃,

Ỹ , and ũ as, respectively, the actual tax rate, the actual level of output, and the unobserved output shock.

To sum up, the presence of unobserved shocks and measurement error can tilt the optimal strategy of

the policymaker one way or another in manners already studied in the literature that has followed the lead

of Poole (1970). This, however, does not interfere with the essence of our paper’s main message regarding

the choice of a communication strategy as a means for regulating the impact of strategic uncertainty and

the bite of the considered forms of bounded rationality.

F Inattention vs. Distorted Reasoning

Our main analysis allows people to imperfectly reason about equilibrium, which is the friction of interest,

but abstracts from the possibility that people are inattentive to forward guidance. In this Online Appendix,

we accommodate this possibility and study how it matters, or does not matter, for our paper’s lessons. In

particular, we show that our main result (Theorem 2) remains intact if we let people be rationally inatten-

tive and maintain our working hypothesis that the policymaker aims at getting the economy as close as

possible to the rational-expectations outcome. But we also explore what happens away from this case.

F.1 Implementability and distortions

We start with a reduced-form specification that let us flexibly incorporate both inattention and imperfect

equilibrium reasoning. A specific micro-foundation in terms of information and priors will be provided in

the next subsection.

Maintain that higher-order beliefs have the structure from Section 3.3, or

Ēh[X ] =λh−1Ē[X ],

for some λ ∈ (0,1] and all h ≥ 2. But now let first-order beliefs satisfy

Ē[X ] = q X ,

13



for some parameter q ∈ (0,1]. Our analysis so far is nested by q = 1. Inattention, rational or not, is in-

troduced by letting q < 1. Alternatively, q < 1 can be interpreted as the main specification of “sparsity”

employed in Gabaix (2014) and Gabaix (2020).

Behavior is still determined by the solution to the following game:

ki = Ei [(1−δX )X +δX K ] ,

with X ∈ {τ,Y } depending on the form of forward guidance. Aggregating this and replacing Ē[X ] = q, we

get

K = (1−δX )q X +δX Ē[K ],

which makes clear that aggregate behavior depends, not only on the average beliefs of K , but also on

the average belief of X , which now moves less than to one-to-one with X insofar as q < 1. That said, the

following property still holds:

Ē[K ] =λK .

This makes clear that λ alone pins down the perceived responsiveness of others relative the truth.

Theorem 1 readily extends modulo the following change in the slopes of the implementability con-

straints:

µτ =
(
1−α+ 1−αγ

1−αγλαq

)−1

and µY = 1−α+α(1−γ)λ−α(1−αγ)q

(1−α)
(
1−α+α(1−γ)λ

) . (95)

Instrument communication necessarily produces attenuation, or µτ > 1, because both frictions (q < 1 and

λ< 1) work in the same direction. By contrast, the case for target communication is ambiguous (µY ≶ 1),

because the amplification induced by rigid higher-order beliefs (λ< 1) opposes the attenuation induced by

inattention (q < 1). Which effect dominates depends on the belief parameters (q,λ) and the GE feedback

γ, because the last interacts with rigid higher-order beliefs as explained in our main analysis.2

Finally, note that µτ = µY if and only if q = λ. In this knife-edge case, agents’ perception of all vari-

ables, communicated directly or not, is uniformly dampened by a single parameter and, as a result, we

recover irrelevance of the instrument-versus-target choice. We allude to this fact in our discussion of clar-

ity and confidence in Section 7—a model with “plain” inattention does not capture our desired feature of

relaxing the most essential property of (full information) rational expectations equilibrium, which is the

interchangeability of different objects that appear in the equilibrium allocation.

F.2 A signal extraction model

To provide a more specific structure for what q and λ mean as independent parameters, consider the

following model of inattention with a behavioral twist. Let the announcement X be Gaussian with mean

0 and known variance σ2
X .3 Each agent, because of their inattention, observes in effect a noisy signal

2Indeed, attenuation is obtained with target communication (i.e., µY > 1) if and only if q < q̃(λ,γ) ≡ 1−α(1−(1−γ)λ)
1−αγ . The

threshold q̃ is increasing in both λ and γ, always exceeds λ, and reaches 1 when either λ= 1 or γ= 1.
3This property will be maintained in the policy problem we consider if the underlying shock θ is Gaussian with known variance,

because X is itself proportional to θ in equilibrium
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si = X +ui , where ui is idiosyncratic Gaussian noise with mean 0. Agent i perceives ui to have varianceω2;

the noise actually has variance ξ2, where ξ may or may not be the same as ω depending on whether the

agent has the correct prior about his cognitive capacities. It follows, from simple signal-extraction math,

that the agent’s own expectation of X is

Ei [X ] = σ2
X

σ2
X +ω2

(X +ui ).

This expression, averaged and then mapped to the reduced-form model for average expectations intro-

duced in the previous subsection, gives Ē[X ] = q X with

q ≡ σ2
X

σ2
X +ω2

.

When agents perceive their internal representations to have more noise (i.e., ω2 is higher), q becomes

smaller and first-order beliefs are more attenuated. Note that there is no direct role for the actual noise

variance ξ2 in determining the mean belief, which is sufficient for characterizing implementable alloca-

tions. Nonetheless, we can also define a “rational” signal-to-noise ratio, or

q∗ ≡ σ2
X

σ2
X +ξ2

,

which is a benchmark to which we can compare the actual outcome whenever subjective perceptions

diverge from reality.When agents over-estimate their cognitive capacities or the precision of their infor-

mation, ω2 < ξ2 and q > q∗. When they make the opposite mistake, ω2 > ξ2 and q < q∗.

The above completes the description of how agents think about themselves. Let us now turn to how

they think about others. Agent i perceives any other agent j to receive a signal of the form X +u j , where

u j has mean 0 and variance ω̃2, which again may not equal the true variance ξ2. Agent i believes further

that agent j will associate variance ω̃2 with the signals of agents k 6= j , and so forth. It is simple to show

that second-order beliefs thus satisfy

Ei [E j [X ]] = Ei

[
ν2

ν2 + ω̃2 (X +u j )

]
=

(
ν2

ν2 + ω̃2

)
Ei [X ]

Averaging and iterating this argument, we get Ēh[X ] =λh−1Ē[X ] with

λ≡ ν2

ν2 + ω̃2 .

This scalar therefore depends exclusively on what each agent perceives to be the quality of others’ infor-

mation.

Note now that q ∈ (0,1) and λ ∈ (0,1) are guaranteed respectively by ω2 > 0 and ω̃2 > 0, or positive per-

ceived variances. The case q > λ is guaranteed by ω2 > ω̃2, or a given agent believing he is more informed

and/or attentive than the average other agent. The opposite case, q < λ, is associated with the opposite,

or a given agent’s belief that others are more likely to be paying attention.
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The canonical noisy rational expectations case is nested for ω̃2 = ω2 = ξ2, or λ = q = q∗. But ω2 = ω̃2,

or λ = q, alone is necessary for a model that, in terms of the equivalence between instrument and target

communication irrelevance outcomes, is isomorphic to the noisy rational-expectations model.

Going back to the analysis of the previous subsection, recall that the implementability constraints de-

pend only on q and λ, not on q∗. This is because, in a linear model such as ours, the actual level, or the

value of q∗, does not matter at all for the positive properties of aggregate behavior; what matters is only

people’s subjective view of the world. But as we explain below, q∗ matters for judging the normative im-

plications of any given behavior.

F.3 Rational inattention or “one-distortion case”

Our baseline analysis and the loss function (3) compared all allocations to the full-information, rational-

expectations allocation. This may not be appropriate in an environment with rational inattention, as in

Sims (2003) and large follow up literature. Angeletos and Sastry (2019) show that the introduction of such

inattention alone does not upset the Welfare Theorems: there is no policy that can improve upon market

outcomes. .

The basic intuition is that there is no good reason for the policymaker to try to correct people’s behavior

if any “friction” in it is merely the product of the agents’ optimal use of limited information or limited

cognitive capacity. To capture this idea in reduced form, we now consider an altered policy problem that

is “re-centered” around the rational expectations equilibrium (i.e., the one with correct perceptions of the

noise variance).

Let us first consider the simplest such case, in which mis-perception of others’ precision of information

is the only behavioral distortion. This means q = q∗, or agents correctly perceive their own precision,

but λ 6= q = q∗, or agents mis-perceive others’ precision. Let µin be the slope of the implementability

constraint in a counterfactual world in which λ= q = q∗. Re-centering the policymaker’s objective around

this reference point amounts to the following modification of the loss function:

L(τ,Y ,θ) ≡ (1−χ)(τ−θ)2 +χ(Y −θ/µin)2. (96)

This problem features only one distortion, relative over or under confidence, and thus resembles our base-

line policy problem with a new “center point.” Given this adjustment in the relevant benchmark for opti-

mality, we can prove that our main result is once again generic for λ 6= q :

Proposition 1. Assume the combination of first and higher-order uncertainty described above and a policy

objective that treats the noisy rational expectations equilibrium as the first-best. For q ≤ 1 and λ 6= q, there

exists some critical threshold γ̂ ∈ [0,1) such that target communication is strictly preferred for γ> γ̂.

This result, and all others in this section, are proved in a final subsection of this Online Appendix. The

result intuitively “re-isolates” our main friction of interest as the only source of distortion.
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F.4 Irrational inattention or “two-distortion case”

Let us now consider a situation in which there is a second competing distortion induced by irrational

inattention or some other “wedge” in first-order beliefs.

A first path forward for evaluating optimal policy is to treat inattention and the behavioral bias as joint

sources of inefficiency. This is tantamount to evaluating µin in (96) with q∗ = 1, or continuing to use the

original objective (3). Provided λ< q , the paternalistic planner again uses a threshold strategy:

Proposition 2. Let c(γ) ≡ I{A ∗ = AY } be a 0 or 1 indicator for using target communication. For λ < q ≤
q∗ = 1, c(γ) weakly increases on the domain [0,1].

In this case, target communication may be preferred on the entire domain. This has the opposite

intuition from the previous result: some over-reaction in GE reasoning helps offset the attenuation from

incomplete information.

Note that the previous two propositions do not cover the case of q < λ< q∗ = 1, with agents believing

they are “worse than average.” In such a case, the considerations of canceling out the friction in higher-

order reasoning and “fighting” the wedge in first-order beliefs do not stack with one another. Instead, there

is now room for the familiar second-best logic of using one distortion to fight another.

Next, consider the case of q∗ < 1 but q > q∗. There is optimally some inattention, but agents over-

perceive the precision of their own signals. As discussed later, the empirical evidence in Kohlhas and Broer

(2018) and Bordalo et al. (2020) supports such a case in the data. We now consider a policy problem with

the objective (96), but with µin evaluated at q = q∗ and λ = q∗. In such a case, we can show that if λ < q

our result extends in the following sense:

Proposition 3. Let c(γ) ≡ I{A ∗ = AY } be a 0 or 1 indicator for using target communication. For λ < q ≤ 1

and q∗ < q, c(γ) weakly increases on the domain [0,1].

Empirical (and psychological) context. The combination of the evidence provided in Bordalo et al. (2020),

Coibion and Gorodnichenko (2012, 2015), Coibion et al. (2018), Kohlhas and Broer (2018), and Kohlhas

and Walther (2018) from various surveys of macroeconomic forecasts rejects the representative-agent,

rational-expectations benchmark. Much of this evidence concentrates on professional forecasters, but

some of it covers firms and consumers as well. Notwithstanding the difficulty of extrapolating from such

broad-scope evidence to the specific counterfactual studied in our paper, we now explain why this evi-

dence points towards the following combination of parameters, which (per Proposition 3) suffices for our

main result to survive even when inattention is irrational:

• q < 1, meaning that people are inattentive or imperfectly informed;

• q∗ < q , meaning that people over-estimate the precision of their information relative to the truth;

and

• λ< q , meaning that people under-estimate the precision of others’ information relative to their own.
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The first property is documented in Coibion and Gorodnichenko (2012, 2015) by showing that average

forecasts under-react to news. These papers also offer a structural interpretation of this fact in terms of

models with dispersed noisy information and rational expectations, along the lines of Morris and Shin

(2002) and Woodford (2003). But they do not contain any evidence that would support this hypothesis

against the richer alternative. That is, they presume q = λ = q∗ < 1, but the provided evidence actually

only proves q < 1 and λ < 1, leaving the q −λ gap and the value of q∗ free. Accordingly, Gabaix (2020)

interprets the same fact as evidence of a certain form of irrational inattention, or in terms of a model

where q < 1 but q∗ = 1.

This ambiguity is resolved by the combination of Bordalo et al. (2020) and Kohlhas and Broer (2018).

These papers provide evidence that, whereas forecast errors are positively related to past forecast revisions

at the aggregate level (as originally shown in Coibion and Gorodnichenko, 2015), they are negatively related

at the individual level.

The second fact, by itself, rejects rational expectations: with rational expectations, an individual’s fore-

cast error cannot be forecastable by his own past information. Furthermore, the sign of the documented

bias points towards individual over-reaction to own information. Kohlhas and Broer (2018) attribute such

over-reaction to the tendency of an individual to think that his information is more precisely than it ac-

tually is (“absolute over-confidence”). In the language of the simple model presented above, this means

q > q∗. Bordalo et al. (2020) propose a variant explanation, based on “representativeness bias,” which

though works in essentially the same way and, for our purposes, can also be captured by q > q∗.

To match the first fact, or the under-reaction of the average forecasts, it is then necessary to have dis-

persed noisy information. To understand why, recall that this fact alone could be explained either by dis-

persed noisy information, as originally shown by Coibion and Gorodnichenko (2012, 2015) themselves, or

by a bias that causes individual beliefs to under-react, as suggested by Gabaix (2020). But we just argued

that the bias in individual beliefs, as evidenced in the second fact, is of the opposite kind. The two facts

together therefore point towards the combination of over-confidence and dispersed noisy information,

which in the language of the model presented above means q∗ < q < 1.

Both Bordalo et al. (2020) and Kohlhas and Broer (2018) reach basically the same conclusion. Angeletos

and Huo (2020) further clarify why information has to be not only noisy but also dispersed: the aforemen-

tioned facts together imply one agent’s forecast error is predictable by the another agent’s information.

Angeletos and Huo (2020) also develop the precise mapping between these facts and a model that has a

similar formal structure as our framework—and that adds various extra features that are needed for quan-

titative purposes, including richer micro-foundations, long horizons and learning dynamics, but are of

course beyond the scope of our paper.

More importantly for the present purposes, Kohlhas and Broer (2018) provide a third fact, which points

towards λ < q : individual forecasts over-react to consensus forecasts. This is consistent with the hy-

pothesis that the typical individual under-estimates the information of others and is thus relatively over-

confident in their own assessment. As mentioned in the main text, such a perception in being “better than

average” is documented by psychologists in various contexts (see, for instance, Alicke and Govorun, 2005).

In our context, it translates into a lack of confidence in other agents’ attentiveness, or λ< q .
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Of course, the literature reviewed here may not be the final word on what the best structural interpreta-

tion of the available evidence on expectations is. Also, this evidence need not be directly importable to the

context of interest. In particular, Garcıa-Schmidt and Woodford (2019) and Farhi and Werning (2019) argue

that, because this was the first time the United States had hit the ZLB context and nobody could draw from

past data to infer the GE effects of the various unconventional policies the Fed had to experiment with,

people may have naturally resorted to introspection and deductive (iterative) reasoning, of the kind seen

in experiments. If this argument is valid, it offers offers a more direct justification for our baseline analysis.

Still, the evidence discussed above is complementary: not only it rejects the representative-agent, rational-

expectations benchmark but also favors, within the extension presented in this Online Appendix,the par-

ticular scenario of λ< q and q∗ < q , which in turn suffices for our main policy prescription to continue to

hold (Proposition 3) despite the presence of confounding distortions.

F.5 Proofs

Proof of Proposition 1

Note first the following properties of (µin,µτ,µY ), which can be verified by direct calculation:

1. µτ =µin when γ= 0, and µτ >µin when γ ∈ (0,1].

2. µY =µin when γ= 1, and µY <µin when γ ∈ [0,1)

Note finally that µY > 0 if and only if λ> 1+q −1/α, which by the same argument provided in Lemma D.2

is always true if we have specified |δY | < 1 for all γ ∈ [0,1]. As with the main result, we will focus on such a

case in the proof.

Assume that the policymaker’s objective function is given by (96), where µin defines the slope of the

implementability constraint in the noisy rational expectations case of a given model (i.e., in which λ is set

equal to q).

The objective in terms of the message slope r and the implementability slope µ is

(1−χ)(r −1)2 +χ(r /µ−1/µin)2

The optimal r in closed-form, as a function of other parameters, is

r (µ) =
(1−χ)µ2 +χ µ

µin

(1−χ)µ2 +χ
and the new objective function, in terms of (µ,µin), is a function `0:

L = `(µ,µin) ≡χ(1−χ)
(µ−µin)2

µ2
in(µ2(1−χ)+χ)

(97)

Note that the derivative of the loss function f with respect to γ comes through two components, and is

∂`

∂γ
= ∂`

∂µ

∂µ

∂γ
+ ∂`

∂µin

∂µin

∂γ
(98)
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The two partial derivatives of ` are

∂`

∂µ
= 2(1−χ)(χ)

(µ−µin)(µµin(1−χ)+χ)

µ2(µ2(1−χ)+χ)2

which is positive if and only if µ>µin, and

∂`

∂µin
=−2(1−χ)(χ)

µ

µin
· (µ−µin)

µ2
in(µ2(1−χ)+χ)

which is positive if µ<µin.

Plugging the previous expressions into (98), we have that ∂`/∂γ> 0 is positive if µ>µin and

∂µ

∂γ
> µ

µin

µ2(1−χ)+χ
µµin(1−χ)+χ

∂µin

∂γ
(99)

or if µ<µin and

∂µ

∂γ
< µ

µin

µ2(1−χ)+χ
µµin(1−χ)+χ

∂µin

∂γ
(100)

Finally, note that the partial derivative of µin with respect to γ is

∂µin

∂γ
= α2(1−q)λ

(1−α+αq(1−q))2 > 0

Monotonicity of loss with instrument communication. Note that the derivative of µτ in γ is given by

∂µτ

∂γ
= qα2(1−λ)

(1−α+qα(1−αγ)−αγλ(1−α))2 > 0

Consider first this case q >λ which entails µτ >µin. A looser version of (99) is

∂µτ

∂γ
>

(
µτ

µin

)2 ∂µin

∂γ

and this can be verified by “brute force”: the previous expression is

(1−λ)

(1−q)
> (1−λαγ)2

(1−qαγ)2 (101)

Note that an upper bound for the right-hand-side is given for γ= 1, or

(1−λ)

(1−q)
> (1−λα)2

(1−qα)2

But this is guaranteed if we impose α< 1/2, which was consistent with |δY | > −1 on the entire domain of

study.

Now consider q <λ. The loose version of (100) is

∂µτ

∂γ
<

(
µτ

µin

)2 ∂µin

∂γ

because for µτ < µin the right-hand-side is a lower bound. From the exact same math of (101), the key

condition is now
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(1−λ)

(1−q)
< (1−λαγ)2

(1−qαγ)2 (102)

which is satisfied for the exact same reason.

Together, these arguments suffice to show that in any case, `(µτ,µin) increases in γ. Note finally that

this loss function is 0 at γ= 0, where µτ =µin, and strictly positive at γ= 1, where µτ 6=µin.

Monotonicity of loss with target communication. The derivative of µY in γ is given by

∂µY

∂γ
= qα2(1−λ)

(1−α+αλ(1−γ))2 > 0

First consider q > λ, which entails µY < µin. It is simple to show that (100) is never satisfied because
∂µY

∂γ > ∂µin

∂γ , since

∂µY

∂γ
= (1−λ)

(1−q)

(1−α+αq(1−γ))2

(1−α+αλ(1−γ))2

∂µin

∂γ
> ∂µin

∂γ

Next consider the case q <λ, which entails µY >µin. Note that condition (99) is violated because

∂µY

∂γ
= (1−λ)

(1−q)

(1−α+αq(1−γ))2

(1−α+αλ(1−γ))2

∂µin

∂γ
< ∂µin

∂γ
<

(
µY

µin

)2 ∂µin

∂γ

Together, these arguments suffice to show that `(µY ,µin) decreases in γ. Note finally that this loss function

is 0 at γ= 1, where µY =µin, and strictly positive at γ= 0, where µY 6=µin.

Proving the threshold strategy. Given the monotonicities established above, proving the sought-after

result—that target communication is optimal if and only if γ > γ̂, for some γ̂ ∈ (0,1)—requires only using

continuity arguments like in the proof of Theorem 2.

Proof of Proposition 2

First, we note the monotonicity of (µτ,µY ) in γ. The derivative of µτ with respect to γ is

∂µτ

∂γ
= 1

µ2
τ

αq(1−λ)

(1−λγ)2 > 0

and the derivative of µY is
∂µY

∂γ
= 1

µ2
Y

αq(1−α)(1−λ)

(αq(δY −1)−λδY +1)2 > 0

Next, we want to show that µτ >µY . The correct condition in terms of parameters is

1+ λα(1−γ)
1−α −αq 1−αγ

1−α
1−α+λα(1−γ)

≤ 1−λαγ
(1−α)(1−λαγ)+αq(1−αγ)

Given that µY > 0, which is guaranteed like just as in Lemma D.2, the left denominator is positive. The

other three terms are necessarily positive. Thus an equivalent statement, after cross-multiplying, is the

following:

(1−λαγ)(1−α+λα(1−γ)) ≥
(
(1−λαγ)+ αq(1−αγ)

1−α
)

(1−α+λα(1−γ)−αq(1−αγ)
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Subtracting like terms from each side, and dividing by α> 0, yields the following condition:

(q −λ)(1−αγ) ≥ 0

Hence q > λ and αγ < 1 are a sufficient condition for µτ > µY , and either q = λ or αγ = 1 are a sufficient

condition for µτ =µY .

Finally, let us return to the proof of optimality. It is straightforward to solve the expression for µY for

some γ̃Y (α,λ, q) ∈ (0,1] such that µY |γ=γ̃Y = 1. One can apply the argument in the proof of Theorem 2 to

the loss functions Lτ(γ) and LY (γ) on the domain [0, γ̃Y ]. There is some γ̂ ∈ [0, γ̃Y ) where the functions

cross.

For γ ∈ (γ̃Y ,1), we know that (i) µY and µτ both increase in γ and (ii) µτ > µY . It is straightforward to

deduce that µτ > µy > 1 for γ> γ̃Y (and hence LY <Lτ), which shows the optimality of target communi-

cation and completes the proof.

Proof of Proposition 3

We proceed with the same parameter restriction assumed in the proof of Proposition 1. Note also that

the same expressions for the loss functions, the partial derivatives thereof, and sufficient conditions for

monotonicity of the loss function in γ still apply.

Applying arguments from the proof of Proposition 1, it is simple also to show that µτ >µY and µin >µY

on this domain.

Case 1: q∗ ≤ λ < q. In this case, µτ ≤ µin with equality only for q∗ = λ and γ = 1, verified by the direct

calculation

1−αλγ
(1−α)(1−αλγ)−qα(1−αγ)

≤ 1−αq∗γ
1−α−q∗α(1−γ)

(103)

In this case, we have µY <µτ ≤µin, and all three increasing in γ. It follows that instrument communication

always produces less loss and is preferred on the entire domain γ ∈ [0,1]. To see this, note that for µ< µin,

the loss function is decreasing in µ.

Case 2: λ < q∗ ≤ q
1+α(q−λ) < q. Re-arrangement of (103), with this condition, again shows µτ ≤ µin with

equality only at γ = 1 and q∗ = q
1+α(q−λ) . Again, instrument communication is preferred on the entire

domain.

Case 3: q
1+α(q−λ) < q∗ < q and λ < q∗. In this final case, there exists a γ̌ such that µτ > µin for γ > γ̌ and

µτ ≤ µin for γ ≤ γ̌. The previous argument applies to show the optimality for instrument communication

for γ≤ γ̌. For γ> γ̌, we want to show that the loss for instrument communication strictly increases and the

loss from target communication strictly decreases.

From the proof of Proposition (1), a sufficient condition for the first is that

∂µτ

∂γ
>

(
µτ

µin

)2 ∂µin

∂γ
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This condition simplifies to
q

q∗
(1−λ)

(1−q∗)
> (1−λαγ)2

(1−q∗αγ)2

Taking a lower bound on the left (with q/q∗ ≥ 1) and an upper bound on the right (evaluating at γ = 1)

gives
(1−λ)

(1−q∗)
> (1−λα)2

(1−q∗α)2

which, as used in the proof of Proposition 1, will always hold for λ< q∗ and α< 1/2. Thus we have shown

that Lτ(γ), the loss function associated with instrument communication, strictly increases for γ> γ̌.

Next, a sufficient condition for LY (γ), the loss function from target communication, to decrease for

γ> γ̌ is ∂µY

∂γ > ∂µin

∂γ . By direct calculation,

∂µY

∂γ
= q

q∗
(1−λ)

(1−q∗)

(1−α+αq∗(1−γ))2

(1−α+αλ(1−γ))2

∂µin

∂γ
> ∂µin

∂γ

so this is always true.

We have thus established that the difference in loss between target and instrument communication,

or ∆≡LY (τ)−Lτ(τ), decreases in γ for γ> γ̌.

Let the choice of target communication be a 0 or 1 indicator variable, c ≡ I{A ∗ = AY } = I{∆ < 0}. c

weakly decreases in ∆, so the choice of target communication weakly increases in γ for γ ∈ (γ̌,1]. Because

c = 0 for any γ ∈ [0, γ̌], this completes the proof that c weakly increases in γ in [0,1].

G Sophisticated Forward Guidance and Policy Rules

G.1 Set-up

Assume that, after observing θ, the policymaker can commit to and communicate a flexible relation be-

tween the instrument τ and the outcome Y , given by

τ= T (Y ;θ),

for some function T : R2 → R.4 Without serious loss of generality, we restrict attention to linear reaction

functions of the form

T (Y ;θ) = a +bY , with a = A(θ) and b = B(θ), (104)

for arbitrary A(·) :R→R and B(·) :R→ (b,1), where b ≡ 1+αγ
1−2α+αγ <−1. The bounds on b are necessary and

sufficient for “reasoning to converge,” or for infinite-order beliefs not to have undue influence on behav-

ior.5 The simpler strategies considered in our baseline analysis are nested with b = 0 and a = τ̂ for instru-

ment communication, and b →−∞ and −a/b → Ŷ for target communication. With the flexibility added

4Clearly, the outcomes implemented with such a policy rule coincide with those implemented with a rule of the form τ =
T (K ;θ), since Y is a (fixed) function of τ and K .

5See the proof of Proposition 5 for the details. In the New Keynesian framework, the analogue of b < 1 is the Taylor principle,

and the analogue of b > b is the additional bound on the slope of the Taylor rule identified by Guesnerie (2008) as necessary and

sufficient for the unique linear REE of that model to be also the unique rationalizable outcome.
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here, forward guidance amounts to announcing, conditional on θ, a pair of numbers (a,b) = (A(θ),B(θ)),

or an intercept and a slope for the reaction function, instead of a single number τ̂ or Ŷ .6

All assumptions about depth of knowledge and rationality now relate to agents’ understanding of the

function T, or the pair (a,b). In particular, Assumption 4 is adapted as follows: agents believe that only a

fraction λ ∈ [0,1] of the others are both rational and aware of the actual (a,b), like themselves; the rest are

expected to play the “default” action k = 0, either because of inattention or because of irrationality.7

G.2 Optimal policy

In our main analysis, we contrasted how the choice between instrument and target communication was

irrelevant in the rational-expectations benchmark (λ = 1) to how it became crucial in managing expecta-

tions once we accommodated bounded rationality (λ < 1). The next result generalizes this insight to the

richer policy strategy space allowed here.

Proposition 4. Consider a reaction function T and let Y (θ) and τ(θ) be, respectively, the induced equilib-

rium values of the outcomes and the supporting policies (together, “allocations”). Next, consider any other

reaction function T ′ such that T ′(Y (θ),θ) = T (Y (θ),θ) for all θ.

(i) When λ= 1, T ′ induces the same equilibrium outcomes and policies as T.

(ii) When instead λ< 1, T ′ induces different equilibrium outcomes and policies than T.

Part (i) is familiar from the existing literature on Ramsey problems, in which there is often a large

family of policy rules that implement the same equilibrium allocations and policies. The analogue of this

property in the 3-equation New Keynesian model is also well known: there are multiple combinations of a

state-contingent intercept and a slope for the Taylor rule that implement the same equilibrium paths for

output, inflation, and interest rates.8

Part (ii) shows that this kind of irrelevance breaks once we bound agents’ depth of knowledge and ratio-

nality. Fix T and let θ 7→ (τ∗(θ),Y ∗(θ)) be the equilibrium mapping from states to allocations implemented

by T. Next take any other T ′ that satisfies T ′(Y ∗(θ),θ) = τ∗(θ). This property guarantees that agents find it

optimal to play the same action under T ′ as under T insofar as long as they conjecture that T ′ continues

to induce the same allocations as T. When λ = 1, one can close the loop to prove this conjecture is self-

fulfilling and hence that T ′ induces the same behavior as T. But once λ< 1, agents doubt that others make

6This interpretation is under the maintained timing, which has the policymaker choose and communicate the scalars (a,b) af-

ter observing θ. But the same outcomes obtain also with an alternative timing that has the policymaker choose and communicate

the entire mappings (A(·),B(·)) prior to observing θ. The first perspective seems more natural in the context of forward guidance

and under the interpretation of θ as the policymaker’s current assessment of the best thing to do. The second perspective is more

appropriate for connecting to the macroeconomic literature on policy rules and for re-interpreting θ as a future shock. Finally,

note that for now we are allowing both the intercept and the slope of the policy rule to vary with θ, but below we will show that

optimality requires that only the intercept varies with θ.
7This specification imposesλ≤ 1. But the results stated below readily extend toλ> 1, or a situation where agents over-estimate

the responses of others and the GE effects of policy, along the lines of Section 5.3.
8The most applied segment of the New Keynesian literature (e.g., that on estimated DSGE models) often removes the state-

contingency of the intercept of the Taylor rule. We return to this issue at the end of this section.
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the same conjecture. This causes them to form different expectations about K under T ′ than under under

T, which in turn leads them to follow different behavior under T ′ than under T .

In short, the above result generalizes our earlier insights about the role of policy in regulating the error

in the public’s reasoning and its footprint on actual behavior. The upshot for optimality is given below:

Proposition 5. (i) When λ = 1, the optimal rule is indeterminate and its slope can be anything: the

first best is implemented if and only if the intercept satisfies a = (1− b)θ, for an arbitrary (possibly

θ-contingent) slope b.

(ii) When instead λ 6= 1, the optimal rule is unique and its slope is inversely related to the GE feedback: the

first best is implemented if and only if

b =− γ

1−γ and a = 1

1−γθ ∀θ. (105)

With rational expectations, optimality requires that τ= Y = θ, but there is a continuum of policy rules

that induce this as an equilibrium. The analogue in the New Keynesian model (without a binding ZLB

and markup shocks) is that the first best can be implemented with a continuum of Taylor rules, whose

state-contingent intercept tracks the natural rate of interest and whose non-contingent slope with respect

to inflation or the output gap is indeterminate.

With bounded rationality, this indeterminacy disappears. The slope of the optimal rule is now inversely

tied to the strength of the GE feedback, in a way that smooths out our baseline main result (Theorem 2): as

γ increases, the policymaker gives more emphasis on anchoring the public’s expectations of Y rather than

their expectations of τ.

To see this more clearly, let us first re-express the optimal rule as follows:

τ−θ =− γ

1−γ (Y −θ).

From this perspective, the optimal forward guidance consists of two components: the policymaker’s as-

sessment of the “fundamentals” and of the corresponding “rational” outcome (e.g., the central bank’s fore-

cast about the natural rate of output) in the form of θ; and a commitment about how much she will tolerate

a gap in terms of τ versus a gap in terms of Y . Building on our discussion of categorizing policy commu-

nication in Online Appendix XX, the former piece might be reflected in the policymaker’s overall outlook

(e.g., as reflected in the Summary of Economic Projections and dot plots), whereas the latter requires an

explicit discussion of policy’s contingency on different outcomes. The latter piece, our analysis shows, is

required to achieve the first best—forecasts, by themselves, cannot do the job.

The next result expands on how policy optimally manages the expectations of interest rates and aggre-

gate employment when both of them are distorted due to bounded rationality:

Proposition 6. Let fτ(γ) ≡ |τ− Ē[τ]| and fY (γ) ≡ |Y − Ē[Y ]| denote the aggregate errors in the expectations

of, respectively, the instrument and the outcome, evaluated at the optimal policy, as functions of γ. Then, for

all γ ∈ (0,1): (i) fτ(γ) > 0 and fY (γ) > 0; (ii) f ′
τ(·) > 0, and f ′

Y (·) < 0.
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The first property shows that, away from the extreme values of γ, the optimal policy is never completely

clear: it does not eliminate the mistakes in either kind of expectations. This might be surprising given

the previous discussion of “forecasts plus commitments”—in this interpretation, if the Fed had provided

forecasts and a dot plot that described τ= Y = θ, its optimal forward guidance would induce the public to

think something else.

The second property shows that policy shifts clarity from τ to Y as the GE feedback increases. This

makes even clearer how the optimal policy rule “smooths out” the main insight of Theorem 2 about switch-

ing the spotlight from instruments to targets, or from interest rates to unemployment.

Although the optimal rule does not eliminate the mistakes in people’s reasoning about equilibrium,

under the assumptions made thus far it insulates their actual behavior from such reasoning and recovers

the policymaker’s first best. The intuition is similar to the one developed for the extremes γ= 0 and γ= 1

in our baseline analysis, except that it now extends to interior γ: the optimal rule zeros out equilibrium

reasoning about others’ reactions.9

One should not take the present result too literally. First, there may be costs (left outside our analy-

sis) for communicating sophisticated strategies. Second, if the policymaker is uncertain about the precise

value of γ, the policymaker implements a “second-best approximation” of the policy described in Propo-

sition 5: the first best is not attainable any more, but the optimal b increases (in the sense of first-order

stochastic dominance) in the policymaker’s beliefs about γ. We expect a related result to hold in a multi-

decision extension with limited policy instruments: the policymaker would try to eliminate the distortion

in all decisions, but might succeed in doing so for only some.

But the basic logic is always the same. The optimal policy aims at minimizing the public’s need to

reason about the economy. And this is achieved by shifting emphasis from anchoring the public’s ex-

pectations of τ (“interest rates”) to anchoring the public’s expectations of Y (“unemployment”) as the GE

feedback increases.

G.3 Optimal policy without commitment

We now expand on the role played by commitment. In the absence of commitment, the policymaker

chooses τ in stage 2 so as to minimize L subject to condition (1), taking K as given. This gives the following

optimality condition, which trades off the marginal effect of the policy on the two “gaps:”

(1−χ)(τ−θ)+χ(Y −θ)(1−α) = 0;

Rearranging gives the follow ex post optimal reaction function:

τ= 1−αχ
1−χ θ−

χ(1−α)
1−χ Y . (106)

The coefficients of this reaction function do not depend on the parameter γ, which determined how ex-

pectations of τ and Y mapped to K , because K itself is already determined. By contrast, the optimal policy

9In the language of best-response condition (7), the optimal rule ensures a zero slope on Ei [K ]. This implements the first best

without correctly anchoring beliefs about either the instrument or target, but instead by making sure that the distortions in those

beliefs are exactly irrelevant for choices.
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rule with commitment, given in (105), depends on γ precisely because it internalizes the effect it has on

public reasoning and thereby on K .

Except for the knife-edge case in which χ(1−α)
1−χ = γ

1−γ , the two rules are different. Commitment is nec-

essary for implementing the first best—but only insofar as there is a distortion in equilibrium reasoning

(λ 6= 1). When instead λ= 1, the following class of rules implements the first best under full commitment

and rational expectations: {
τ= (1+b)−bY , for any b

}
But this class now includes the policy rule in (106), which means that commitment is not needed under

rational expectations.

When the policymaker follows (106) and agents have rational expectations, agents correctly expect that

all others will play K = θ and that this together with (106) will induce τ = Y = θ. But once λ 6= 1, this rule

causes agents to believe that K 6= θ, which in turn distorts their behavior away from the first best. The only

way to fix this distortion is to make sure that agents find it optimal to play the first best action regardless

of their beliefs of K (or regardless of their higher-order beliefs), which in turn is possible if and only if the

policymaker commits to the rule described in (106).

We summarize these lessons below.

Proposition 7. In the absence of commitment, the unique optimal policy rule is given by

τ= 1−αχ
1−χ θ−

χ(1−α)
1−χ Y . (107)

This implements the first best whenλ= 1 but not whenλ 6= 1 (except for the knife-edge case in which χ(1−α)
1−χ =

γ
1−γ or θ = 0).

Corollary 1. Commitment is valuable only when λ 6= 1 (away from rational expectations). In these circum-

stances, the rule described in (106) is ex ante optimal, even though ex post suboptimal, because and only

because the commitment embedded in it helps regulate the distortion in equilibrium reasoning.

Of course, the property that commitment is useless under rational expectations is special to our model.

There is a large literature in macroeconomics studying time-inconsistency issues under rational expecta-

tions in the context of both flexible policy rules (Kydland and Prescott, 1977; Barro and Gordon, 1983) and

simpler, instruments-versus-targets implementations (Atkeson, Chari and Kehoe, 2007; Halac and Yared,

2018). But by assuming away these familiar considerations, we have illustrated a new function that com-

mitment can play away from rational expectations.

Circling back to our baseline analysis, this also makes clear the following point: what was crucial about

the two kinds of forward guidance studied there is that they communicated a policy plan (i.e., a com-

mitment to get something done) as opposed to information about fundamentals (e.g., the central bank’s

forecasts of future fundamentals).
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G.4 Proofs

Proofs of Propositions 4 and 5

For a policy rule to implement the first best, it is necessary that T (θ,θ) = θ, which restricts a and b as

follows:

a = (1−b)θ.

We can henceforth focus on the class of policy rules that satisfy this restriction. This is a one-dimensional

class indexed by b.

Solving (104) and (1) jointly for τ and Y , using a = (1−b)θ, and substituting the solution into (2), we

obtain the following game representation for the agents’ behavior in stage 1:

ki = (1−δ)θ+δEi [K ] (108)

where

δ= δ(b;α,γ) ≡ α(γ+b(1−γ))

1− (1−α)b
.

Note that δ ∈ (−1,+1) if and only if b ∈ (b,+1), where b ≡ 1+αγ
1−2α+αγ <−1. This explains the assumed bounds

imposed on b : outside these bounds, “reasoning fails to converge” (this is the present analogue of the

restriction δX ∈ (−1,+1), X ∈ {τ,Y }, in the baseline analysis).

Consider now the case with rigid beliefs from higher-order doubts, as in Section 3.3. Iterating the best

response (108) yields the unique equilibrium average action as

K =
∞∑

h=1
δh−1λh−1ζθ = 1−δ

1−λδθ, (109)

with δ= δ(b;α,γ) defined above. For this to coincide with the first best action, it is therefore necessary and

sufficient that
1−δ

1−λδ = 1

Clearly, this is automatically satisfied whenλ= 1 (rational expectations), regardless the value ofδ, or equiv-

alently of b. This verifies the indeterminacy of the optimal policy rule under rational expectations. When

insteadλ< 1, the above is satisfied if and only if δ= 0, or equivalently b =−γ/(1−γ). Along with a = (1−b)θ,

this completes the characterization of the unique policy rule that implements the first best once λ< 1.10

Proof of Proposition 6

Note that Ē[K ] = Ei [K ] = λK by an argument essentially identical to the one supporting Lemma 2. Eval-

uated at the equilibrium under optimal policy, this is Ē[K ] = λθ. The expected policy instrument and

outcome, evaluated at the optimal rule, are

Ē[τ] = θ

1−γ − γ

1−γ Ē[Y ]

Ē[Y ] = (1−α)Ē[τ]+αλθ
10Clearly, the argument extends to λ> 1, modulo the re-interpretation of the friction along the lines of Section 5.3.
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Solving this system of equations gives

Ē[τ] = 1−λαγ
1−αγ ·θ

Ē[Y ] = 1−α+αλ(1−γ)

1−αγ ·θ

Recall also that the equilibrium satisfies τ= Y = θ.

The instrument forecast gap as a function of γ is

fτ(γ) ≡ |τ− Ē[τ]| =
∣∣∣∣ (1−λ)

1−αγαγ
∣∣∣∣ · |θ|

which satisfies fτ(0) = 0 and f ′
τ(γ) > 0 for γ ∈ (0,1). This obviously implies fτ(γ) > 0 for γ ∈ (0,1). Similarly

the target forecast gap is

fY (γ) ≡ |Y − Ē[Y ]| =
∣∣∣∣ (1−λ)

1−αγα(1−γ)

∣∣∣∣ · |θ|
which satisfies fY (1) = 0 and f ′

Y (γ) < 0 for γ ∈ (0,1). This obviously implies fY (γ) > 0 for γ ∈ (0,1).

Finally, going slightly beyond the original statement of the Proposition, it is simple to see that the

instrument gap is always smaller for γ< 0: fτ(γ) > fY (γ) since |1−γ| > |γ|. This generalizes our results for

the optimality of instrument communication with negative GE effects.
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