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1 Introduction & Motivation

Panel data analysis is viewed an important method of controlling for unobserved individual het-

erogeneity. By exploiting repeated observations across time for each individual economic agents,

we may be able to control for the unobserved heterogeneity that may be possibly correlated with

explanatory variables. For linear models, methods of controlling for unobserved heterogeneity

are well established. A partial list of references is Amemiya and MaCurdy (1986), Anderson and

Hsiao (1982), Bhargava and Sargan (1983), Chamberlain (1982), Hausman and Taylor (1981),

and Mundlak (1978). Less is known about how to control for unobserved heterogeneity in non-

linear models. The methods that work for linear models do not carry over in a straightforward

way to most nonlinear models because it is impossible to eliminate individual e¤ects by some

data transformation, except for a small number of special circumstances discussed by Anderson

(1970), Chamberlain (1980), Hausman, Hall, and Griliches (1984), or Wooldridge (1997).

One way of dealing with the unobserved individual e¤ects is to treat each such e¤ect as

an unobserved random variable, whose joint distribution with observed explanatory variables is

nonparametrically speci�ed. See Chamberlain (1984) for an earlier discussion of such correlated

random e¤ects approach. Despite its theoretical appeal, only a limited number of estimators

have been developed from such perspective. It is primarily because not many identi�cation

results are available for nonlinear panel models with correlated random e¤ects, although there

do exist notable exceptions including Honoré (1992, 1993), and Honoré and Kyriazidou (2000a,

b). Moreover, Chamberlain�s (1992) result on the lack of pint identi�cation for panel probit

model was perceived by many to be a pessimistic news for nonlinear panel models with correlated

random e¤ects.

This paper develops a bound analysis for nonlinear panel models with correlated random

e¤ects. In the last decades, a growing body of literature studied inference where parameters of

interest are partially identi�ed, cf. Berk (1961) and Manski (2003). Recent examples include

Horowitz and Manski (1995), Manski and Tamer (2002), Mullins (2002), Andrews and Berry

(2003), and Chernozhukov, Hong, and Tamer (2003). In the panel literature, Honoré and Tamer

(2002) were the �rst to propose consistent estimation of bounds in dynamic panel models with

unknown initial conditions. This paper focuses on the bound identi�cation, estimation, and

inference methods for general multinomial panel models with correlated random e¤ects. Con-

ditional on the observed explanatory variables, the model becomes a usual mixture model, and

the parametric components are not point identi�ed but are restricted to lie in a set. This builds

on the intuition in Chamberlain (1992) and Honoré and Tamer (2002).

We develop a set consistent estimator and associated inference based on the nonparametric

maximum likelihood estimation (NPMLE) developed by Kiefer and Wolfowitz (1956). Heckman
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and Singer (1984) adopted the NPMLE for a point identi�ed mixture model. Our intuition is

that the same procedure can be applied to bound identi�ed models. The inference methods

that we propose are based on embedding the partially nonparametric likelihood into a more

general non-structrual likelihood, which allows us to provide inferential statements about the

�nite-dimensional parameters. In order to utilize existing computational algorithm, our analysis

is yet con�ned to models with only discrete explanatory variables. On the other hand, our

analysis is applicable to any multinomial panel models including probit models, which could not

be treated within the previous framework, e.g. Honoré and Kyriazidou (2000a), that relied on

point identi�cation, and more complicated dynamic models considered, e.g., by Wolpin (1987).

The estimator of the bound requires an asymptotic framework where the number of indi-

viduals in the sample (n) grows to in�nity while the time series dimension (T ) is �xed. This is

in contrast to the recent proposal suggested by Hahn and Newey (2002), Hahn and Kuersteiner

(2003), and Woutersen (2003), which is based on an alternative asymptotic approximation where

n and T both grow to in�nity. Hahn and Kuersteiner (2003) point out that the alternative as-

ymptotic approximation can be viewed as a higher order approximation when n is �xed and T

grows to in�nity. In other words, the alternative asymptotics based proposal is implicitly based

on the idea that the parameter of interest is consistently estimated by the usual �xed e¤ects

approach as long as T grows to in�nity. When T is not su¢ ciently large, the alternative asymp-

totic approximation is probably of limited practical value, and the bound analysis is expected

to be more plausible. When T is large, then the bound analysis is probably dominated by the

convenience of the alternative asymptotics based procedures.

2 Set Identi�cation and Consistent Estimation

We consider a multinomial panel model with correlated random e¤ects and discrete explanatory

variables. In particular, we assume that the vector Y = (yi1; : : : ; yiT ) of outcome variables can

take J possible values y(1); : : : ;y(J). We also assume that there exists a vectorX = (xi1; : : : ; xiT )

of explanatory variables, which can take K possible values x(1); : : : ;x(K). Assume that

Pr
�
(yi1; : : : ; yiT ) = y

(j)
����i; (xi1; : : : ; xiT ) = x(k)� = L(j;k) (�i; ��)

for some �nite dimensional �� and some function L(j;k). Let ��(k) denote the unknown conditional
distribution of �i given (xi1; : : : ; xiT ) = x(k). We then have

Pr
�
(yi1; : : : ; yiT ) = y

(j)
��� (xi1; : : : ; xiT ) = x(k)� = Z L(j;k) (�; ��) ��(k) (d�)

Our objective is to estimate ��.
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An example of the above model is a very simple Probit model

Pr (yit = 1jxi1; xi2; �i) = �
�
�i +  � di + x0it�

�
where we assume that yit�s are i.i.d. over time conditional on (xi1; xi2; �i). Here, di denotes the

time dummy which is equal to one in the second period. If x is a scalar such that (xi1; xi2) =

(0; 0), or (0; 1) with probability one, we have

Pr (yi1 = 1; yi2 = 1j (xi1; xi2) = (0; 0) ; �i) = � (�i) � (�i + )

Pr (yi1 = 1; yi2 = 1j (xi1; xi2) = (0; 1) ; �i) = � (�i) � (�i +  + �)

where � (�) is the CDF of N (0; 1). Let x(1) = (0; 0) and x(2) = (0; 1). We then have

Pr (yi1 = 1; yi2 = 1j (xi1; xi2) = (0; 0)) =

Z
� (�) � (�+ ) ��(1) (d�)

Pr (yi1 = 1; yi2 = 1j (xi1; xi2) = (0; 1)) =

Z
� (�) � (�+  + �) ��(2) (d�)

It is not di¢ cult to see that dynamic logit model considered by Honoré and Kyriazidou (2000)

also belongs to the class of models considered in this paper. Consistent point estimation is

di¢ cult for both cases because the semiparametric information bound is equal to zero when

time dummies are included. See Chamberlain (1992) and Hahn (2001). It is therefore of interest

to pursue a bound analysis even for this apparently simple model.

Letting Q� �
�
��(1); : : : ;�

�
(K)

�
, we can write the individual log likelihood compactly as

L (yi; xi;�;Q). Due to the usual argument based on Jensen�s inequality, we can see that (��; Q�)

is such that

E [L (yi; xi;�;Q)] � E [L (yi; xi;��; Q�)]

for every (�;Q). This implies that

sup
Q
E [L (yi; xi;�;Q)] � sup

Q
E [L (yi; xi;�

�; Q)]

for every �. Therefore, if we de�neB to be the set of ��s that maximizes supQE [L (yi1; yi2;�;Q)],

i.e.,

B �
(
� : sup

Q
E [L (yi; xi;�;Q)] � sup

Q
E
�
L
�
yi; xi;�

0; Q
��
; 8�0

)
we can easily see that �� 2 B. In other words, �� is bound identi�ed by the set B.

Condition 1 (i) L(j;k) (�; �) is continuous in (�; �) for all (j; k); (ii) �� 2 B for some compact
B; and (iii) �i has a support contained in a compact set C.
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It is natural to estimate B by the the level set of the �nite-sample pro�le likelihood

Bn =

(
� : sup

Q

1

n

nX
i=1

L (yi; xi;�;Q) � sup
�
sup
Q

1

n

nX
i=1

L (yi; xi;�;Q)� �n

)

where �n > 0 is the cut-o¤ parameter that shrinks to zero as a function of the sample size,

following Manski and Tamer (2002). Similar approach was adopted by Honoré and Tamer

(2002).

The parameter is chosen so that

Condition 2 �n / n�1=2an for some an !1 and n�1=2an ! 0 .

This choice of the cut-o¤ is not su¢ ciently precise to be useful in practice. A more useful choice

of �n is provided in the next Section 4.

Characterization and calculation of

sup
Q

1

n

nX
i=1

L (yi; xi;�;Q)

for �xed � can be done by using results established by Lindsay (1983a, 1983b, 1995). In econo-

metric literature, Heckman and Singer�s (1984) estimator is the best known example that applies

such results. We discuss some salient features of Lindsay�s results in Section B.

Theorem 1 Under Conditions 1 and 2, we have

dH (Bn; B) = op(1);

where dH is the Hausdor¤ distance between sets

dH (Bn; B) = max

�
sup
bn2Bn

inf
b2B

jbn � bj ; sup
b2B

inf
bn2Bn

jbn � bj
�

Proof. See Section B.

3 Some Aspects of Computation

3.1 Characterization of Nonparametric MLE

Throughout this section and appendix, we will assume for simplicity of notation a simple probit

model, where xit is a scalar and takes following value: (xi1; xi2) = (0; 0). The proof of more

general case follows identically after an appropriate change of notation. Note that the likelihood
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equal to

L (yi1; yi2;�;Q) = yi1yi2 log

�Z
� (�) � (�+ �)Q (d�)

�
+yi1 (1� yi2) log

�Z
� (�) (1� � (�+ �))Q (d�)

�
+(1� yi1) yi2 log

�Z
(1� � (�))� (�+ �)Q (d�)

�
+(1� yi1) (1� yi2) log

�Z
(1� � (�)) (1� � (�+ �))Q (d�)

�
Note that J = 4 and K = 1 here.

We �rst note some important features of computation established by Lindsay (1995, Chapter

5). Fix �, and let L(1) (�; �) � � (�) � (�+ �), L(2) (�; �) � � (�) (1� � (�+ �)), L(3) (�; �) �
(1� � (�))� (�+ �), and L(4) (�; �) � (1� � (�)) (1� � (�+ �)). Further de�ne p1 � 1

n

Pn
i=1 yi1yi2,

p2 � 1
n

Pn
i=1 yi1 (1� yi2), p3 � 1

n

Pn
i=1 (1� yi1) yi2, and p4 � 1

n

Pn
i=1 (1� yi1) (1� yi2). We

then have

exp

 
1

n

nX
i=1

L (yi1; yi2;�;Q)

!
=

JY
j=1

�Z
L(j) (�; �)Q (d�)

�pj
for J = 4. Fix �, and consider a vector-valued mapping

� 7! L (�; �) �
�
L(1) (�; �) ;L(2) (�; �) ;L(3) (�; �) ;L(4) (�; �)

�0
Let � (�) � fL (�; �) : � 2 Cg. Note that, for each �, and � (�) is a closed and bounded set due
to Condition 1. Now, letM (�) denote the convex hull of � (�). By Lindsay (1995, Theorem 18,

p. 112), it follows that there exists a unique bL (�) on the boundary of M (�) that maximizesPJ
j=1 pj log (lj) over all (l1; l2; l3; l4) 2 M (�). By Lindsay (1995, Theorem 21, p. 116), the

solution bL (�) can be represented as�Z
L(1) (�; �) bQ (d�) ;Z L(2) (�; �) bQ (d�) ;Z L(3) (�; �) bQ (d�) ;Z L(4) (�; �) bQ (d�)�0

where bQ has no more than J points of support. We can therefore conclude that a solution to the
problem maxQ2Q

1
n

Pn
i=1 L (yi1; yi2;�;Q), where Q is a set of probability measures with support

in C, is a discrete distribution with no more than J points of support. Repeating the same
argument for

exp (E [L (yi1; yi2;�;Q)]) =
JY
j=1

�Z
L(j) (�; �)Q (d�)

��j
�1 � E [yi1yi2], �2 � E [yi1 (1� yi2)], �3 � E [(1� yi1) yi2], and �4 � E [(1� yi1) (1� yi2)], we
can conclude that a solution to maxQ2QE [L (yi1; yi2;�;Q)] is a discrete distribution with no

more than J points of support.
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In order to understand the intuition as to why it su¢ ces to consider discrete distributions

with no more than J points of support, let

P (�) �
Z
C
L (�; �) dQ0 (�) ;

where Q0 is the true mixing distribution. In the population, the set of observationally equivalent

parameters � is given by all (�0; Q0) that explain observed frequencies:

P =
Z
LC(�0; �)dQ0 (�)

Any element of � therefore maximizes the population likelihood. The true value �0 solves

P = P(�0) and hence pair (�0; Q0) also maximizes the likelihood.
De�ne � (�) � fL (�; �) : � 2 Cg. For each �, � (�) is a closed and bounded set due to

Condition 1. Now, letM (�) denote the convex hull of � (�). Note that P 2M (�0). Since any

point inM (�0) can be written as a convex combination of at most J vectors located in � (�),
1

it follows that

P =
JX
j=1

�jL (�0; �j) :

where (�1; :::; �J) is on the unit simplex of dimension J . Thus, the mixing distribution with

J points of support (�1; :::�J) with the above probabilities (�1; :::; �J) solves the maximum

likelihood problem in the population.

3.2 Calculation of Marginal E¤ects

The problem of calculating marginal e¤ects of di¤erent kinds can be reduced to calculating the

bounds on partial e¤ects that are computed conditional on xit = x. For instance, consider

computing bounds on the structural partial e¤ects of the form

�j �
�Z
C
�
�
�+ x0�

�
dQ0 (�)

�
;

where �j � �(� + x0�) = @� (�+ x0�) =@x(j). The upper and lower bounds on this e¤ects are

given by

lj = min
(�;Q)2�

�j �
�Z
C
�
�
�+ x0�

�
dQ (�)

�
and uj = max

(�;Q)2�
�j �

�Z
C
�
�
�+ x0�

�
dQ (�)

�
:

It can be shown that it su¢ ces to consider only discrete distributions Q for calculation of lj and

uj . We will focus on the upper bound uj ; an analogous argument applies to the lower bound lj .

Let (�u; Qu) denote some maximizing parameters such that

uj = �
u
j �
�Z
C
�
�
�+ x0�u

�
dQu (�)

�
1This seems obvious, but there might be a name for this �Caratheodory�s theorem? - V.

6



The main claim is that for any �u there exists another discrete mixing distribution QuL with at

most J + 1 points of support that also solves this equation.

Note that, for any � > 0 we can �nd a distribution QuN 2 � with a large number N � J of

support points (�1; :::; �N ) such that

uj � � < �uj �
�Z
C
�(�+ x0�u)dQuN (�)

�
� uj :

Our goal is to show that given such QuN , it su¢ ces to allocate its mass over only at most J + 1

points of support. Indeed, consider the problem of allocating (�1; :::; �N ) among (�1; :::; �N ) in

order to solve

max
(�1;:::;�N )

�uj �

24 NX
j=1

�
�
�j + x

0�u
�
�j

35
subject to the constraints:

�j � 0; j = 1; : : : ; N

JX
j=1

�jL (�0; �j) = P;

JX
j=1

�j = 1:

This a linear program of the form

max
�2RN

c0� such that � � 0; A� = b; 10y = 1;

and any basic feasible solution to this program has N active constraints, of which at most

rank (A) + 1 can be equality constraints. This means that at least N � rank(A) � 1 of active
constraints are the form �j = 0.2 Hence a basic solution to this linear programming problem

will have at least N � (J + 1) zeroes, that is at most J + 1 strictly positive �j�s. Thus, we
have shown that given the original QuN with N � J points of support there exists a distribution

QuL 2 � with just J + 1 points of support such that

uj � � < �uj �
�Z
C
�
�
�+ x0�u

�
dQuN (�)

�
�
�Z
C
�
�
�+ x0�u

�
dQuL (�)

�
� uj :

This construction works for every � > 0.

The �nal claim is that there exists a distribution QuL 2 � with J + 1 points of support

(�1; :::; �J+1) such that

uj = �
u
j �
�Z
C
�
�
�+ x0�u

�
dQuL (�)

�
:

2See, e.g., Theorem 2.3 and De�nition 2.9 (ii) in Bertsimas and Tsitsiklis (1997).
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Suppose otherwise, then it must be that

uj > uj � � � �uj �
�Z
C
�(�+ x0�u)dQuL(�)

�
;

for some � > 0 and for all QuL with J+1 points of support. This immediately gives a contradiction

to the previous step where we have shown that, for any � > 0, uj and the right hand side can

be brought close to each other by strictly less than �.

4 Inference

Theorem 1 does not provide any practical guidance on the choice of the cut-o¤ level �n. It is also

desirable that the choice of the cut-o¤ �n is tied to inferential statements, which appear to pose

special challenges in this setting. In this subsection we propose to base inference on the inversion

of the nonparametric likelihood ratio, embedding the previous semi-parametric likelihood in a

more general nonparametric family. The approach provides conservative inferences about � or

its components.

To simplify presentation of ideas de�ne the following model-implied probabilities:

pjk (�;Q) � Pr
�
(yi1; : : : ; yiT ) = y

(j); (xi1; : : : ; xiT ) = x
(k)j�;Q

�
=

Z
L(j;k) (�; �) �(k) (d�)� Pr

�
(xi1; : : : ; xiT ) = x

(k)
�

and it is convenient to denote

P(�;Q) � fpjk (�;Q) ; j = 1; :::; J; k = 1; :::;Kg:

From the proof of Theorem 1, it follows that the model-implied probabilities coincide with the

true choice probabilities for the true �� and some (generally non-unique) pseudo-true Q�:

pjk � Pr
�
(yi1; : : : ; yiT ) = y

(j); (xi1; : : : ; xiT ) = x
(k)
�
= pjk(�

�; Q�):

Consider also the empirical probabilities

p̂jk �
1

n

nX
i=1

1
�
(yi1; : : : ; yiT ) = y

(j); (xi1; : : : ; xiT ) = x
(k)
�
:

The nonparametric log-likelihood ratio evaluated at P 0 =
n
p0jk; j = 1; :::; J; k = 1; :::;K

o
takes

the form

LR
�
P 0
�
= n

X
j;k

p̂jk ln p̂jk � n
X
j;k

p0jk ln p
0
jk:
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The quantity of especial interest is this one:

LR (P) = n
X
j;k

p̂jk ln p̂jk � n
X
j;k

pjk ln pjk (1)

and its �-quantile is given by

c� (P) = inf
c
fc : PfLR (P) � cg � �g :

The joint con�dence bound for (��; Q�) is then given by

I� ((�
�; Q�)) = f(�;Q) 2 (B;QL) : LR (P (�;Q)) � c�)g ;

where QL is the subset of discrete distributions that, conditional on (xi1; : : : ; xiT ) = x(k), have
J support points in C. The quantile c� (P) is asymptotically pivotal by the classical Pearson�s
argument LR (P) ) �2 ((J � 1)K), hence we have that c� (P) can be consistently estimated
by the �� quantile of �2 ((J � 1)K) variable, denoted as ĉ�, and the approximate con�dence
region is then given by

Î� ((�
�; Q�)) = f(�;Q) : LR (P (�;Q)) � c�)g :

The preceding argument established the following result.

Theorem 2 Under Condition 1, we have

Pf(��; Q�) 2 Î�((��; Q�)g ! �

as n!1

Theorem 2 also leads to a precise choice of the cut-o¤ level needed to insure consistent

estimation in the previous section. One such choice is given by

�n = ĉ�n ;

where the signi�cance level �n should tend to 1 such that the �n -th quantile of �2 ((J � 1)K)
variable satis�es Condition 2 as n!1 slowly enough. This choice makes the estimating region

Bn in Section 1 coincide with desired con�dence region of probability level �n. In practice, �n

may be set equal to some conventional value such as .90 or .95.
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5 Sieve Estimation

The method proposed in the previous sections critically hinges on the multinomial structure on

the distribution of (yi1; : : : ; yiT ). As such, it is not expected to go beyond multinomial models.

In this section, we propose an alternative estimator based on the method of sieves. The method

of sieves cannot avoid some degree of arbitrariness for a given �nite sample, and thus may be

deemed inferior to the Lindsay-type method when dealing with a multinomial model. On the

other hand, the method of sieves is immediately generalizable to models such as panel sample

selection models.

In order to simplify notation and technical argument, we present the alternative method in

the context of multinomial models. Recall that

Pr
�
(yi1; : : : ; yiT ) = y

(j)
��� (xi1; : : : ; xiT ) = x(k)� = Z L(j;k) (�; ��) ��(k) (d�)

and we wrote the individual log likelihood compactly as L (yi; xi;�;Q), whereQ� �
�
��(1); : : : ;�

�
(K)

�
,

we can write the individual log likelihood compactly as L (yi; xi;�;Q). Also recall that the set

B is such that

B �
(
� : sup

Q
E [L (yi; xi;�;Q)] � sup

Q
E
�
L
�
yi; xi;�

0; Q
��
; 8�0

)
:

Maximization of the sample analog of E [L (yi; xi;�;Q)] over all possible distributions Q may be

di¢ cult for arbitrary models. It may therefore be useful to consider the method of sieves, and

estimate the set B by the the level set of the �nite-sample pro�le likelihood

Bp;n =

(
� : sup

Q2Qn

1

n

nX
i=1

L (yi; xi;�;Q) � sup
�
sup
Q2Qn

1

n

nX
i=1

L (yi; xi;�;Q)� �n

)
where Qn denotes the approximating set, and �n > 0 is some cut-o¤ parameter. We assume the
following high-level assumption on the approximating set Qn.

Condition 3 sup�2B;Q2Qn sup
���R L(j;k) (�; �) �(k) (d�)� R L(j;k) (�; �) ��(k) (d�)��� = O (�n) for

some �n = o (1).

The parameter is now chosen so that

Condition 4 �n / �nan for some an !1 such that an = (�n), where �n � max
�
�n; n

�1=2�.
It can be shown that the sieve estimator Bp;n is also consistent:

Theorem 3 Under Conditions 1, 3, and 4, we have dH (Bp;n; B) = op (1).

Proof. Identical to Section B, except that Lemma 2 is replaced by Lemma 3.
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6 Possible Extensions

Our analysis is yet con�ned to models with only discrete explanatory variables. It would be

interesting to extend the analysis to models with continuous explanatory variables. It may be

possible to come up with a sieve-type modi�cation. We expect to obtain a consistent estimator of

the bound by applying the NPMLE combined with increasing number of partitions of the support

of the explanatory variables, but we do not yet have any proof. Empirical likelihood based

method should work in a straightforward manner if the panel model of interest is characterized

by a set of moment restrictions instead of a likelihood. We may be able to improve the �nite-

sample property of our con�dence region by using Bartlett type corrections.

11



Appendix

A Some Lemmas

It would be nice to have uniform consistency of 1n
Pn
i=1 L (yi1; yi2;�;Q) for establishing consis-

tency of Bn.

Lemma 1 Under Condition 1,

sup
�2B;Q2Q

����� 1n
nX
i=1

L (yi1; yi2;�;Q)� E [L (yi1; yi2;�;Q)]
����� = Op�

�
1p
n

�
Here, Q denotes the collection of distributions with support contained in contained in a compact
set C.

Proof. Note that

1

n

nX
i=1

L (yi1; yi2;�;Q)

=

"
1

n

nX
i=1

yi1yi2

#
� log

�Z
� (�) � (�+ �)Q (d�)

�

+

"
1

n

nX
i=1

yi1 (1� yi2)
#
� log

�Z
� (�) (1� � (�+ �))Q (d�)

�

+

"
1

n

nX
i=1

(1� yi1) yi2

#
� log

�Z
(1� � (�))� (�+ �)Q (d�)

�

+

"
1

n

nX
i=1

(1� yi1) (1� yi2)
#
� log

�Z
(1� � (�)) (1� � (�+ �))Q (d�)

�
and

E [L (yi1; yi2;�;Q)]

= E [yi1yi2] � log
�Z

� (�) � (�+ �)Q (d�)

�
+E [yi1 (1� yi2)] � log

�Z
� (�) (1� � (�+ �))Q (d�)

�
+E [(1� yi1) yi2] � log

�Z
(1� � (�))� (�+ �)Q (d�)

�
+E [(1� yi1) (1� yi2)] � log

�Z
(1� � (�)) (1� � (�+ �))Q (d�)

�

12



Further note that 1
n

Pn
i=1 yi1yi2 = E [yi1yi2] + Op

�
1p
n

�
, etc. Therefore, the requisite uniform

convergence with rate Op
�
1p
n

�
�n = sup

�2B;Q2Q

����� 1n
nX
i=1

L (yi1; yi2;�;Q)� E [L (yi1; yi2;�;Q)]
����� = Op

�
1p
n

�
follows, provided����log�Z � (�) � (�+ �)Q (d�)

����� ; ����log�Z � (�) (1� � (�+ �))Q (d�)
����� ;����log�Z (1� � (�))� (�+ �)Q (d�)

����� ; ����log�Z (1� � (�)) (1� � (�+ �))Q (d�)
�����

are bounded, which in turn is implied by Condition 1.

From Lemma 1, we obtain one-sided uniform convergence

Lemma 2 Under Condition 1,

sup
�2B

�����supQ2Q

1

n

nX
i=1

L (yi1; yi2;�;Q)� sup
Q2Q

E [L (yi1; yi2;�;Q)]

����� = Op�
�
1p
n

�
Proof. De�ne

Q�(�) 2 argsup
Q2Q

1

n

nX
i=1

L (yi1; yi2;�;Q) ; Q
#(�) 2 argsup

Q2Q
E [L (yi1; yi2;�;Q)] .

By de�nition of Q�(�) and Q#(�), we have uniformly in � and for all n,

1

n

nX
i=1

L(yi1; yi2;�;Q
#(�))� E

h
L
�
yi1; yi2;�;Q

#(�)
�i

� 1

n

nX
i=1

L (yi1; yi2;�;Q
�(�))� E

h
L
�
yi1; yi2;�;Q

#(�)
�i

� 1

n

nX
i=1

L (yi1; yi2;�;Q
�(�))� E [L (yi1; yi2;�;Q�(�))]

Hence ����� 1n
nX
i=1

L (yi1; yi2;�;Q
�(�))� E

h
L
�
yi1; yi2;�;Q

#(�)
�i����� � 2�n = Op�

�
1p
n

�
uniformly in �, where �n was de�ned in (2). Because �n = Op

�
1p
n

�
, we obtain the desired

result.

Lemma 3 Under Conditions 1 and 3,

sup
�2B

����� supQ2Qn

1

n

nX
i=1

L (yi1; yi2;�;Q)� sup
Q2Q

E [L (yi1; yi2;�;Q)]

����� = Op� (�n)
13



Proof. Because of Lemma 1, it su¢ ces to show that

sup
�2B

����� supQ2Qn
E [L (yi1; yi2;�;Q)]� sup

Q2Q
E [L (yi1; yi2;�;Q)]

����� = O (�n)
which follows from Condition 3.

Lemma 4 Under Condition 1, maxQ2QE [L (yi1; yi2;�;Q)] is continuous in �.

Proof. By the discussion in Section B, we can see that the problem

max
Q2Q

E [L (yi1; yi2;�;Q)]

can be rewritten as

max
(�(1);:::;�(4))2C
(p(1);:::;p(4))2S

JX
j=1

�j log

"
JX
k=1

L(j)
�
�; �(k)

�
p(k)

#
;

where J = 4 and S denotes the unit simplex in RJ . Here,
�
�(1); : : : ; �(J)

�
and

�
p(1); : : : ; p(J)

�
characterize a discrete distribution with no more than J points of support. Because the objective

function is continuous in
�
�; �(1); : : : ; �(J); p(1); : : : ; p(J)

�
, and because C� S is compact, we can

apply the Theorem of the Maximum (e.g. Stokey and Lucas 1989, Theorem 3.6), and obtain

the desired conclusion.

B Proof of Theorem 1

We now turn to the proof of Theorem 1.

Part 1: The �rst part of the proof modi�es slightly the argument of Manski and Tamer (2002)

for the present context. De�ne

�L�n � sup
�2B

sup
Q2Q

1

n

nX
i=1

L (yi1; yi2;�;Q) ;

L�n � inf
�2B

sup
Q2Q

1

n

nX
i=1

L (yi1; yi2;�;Q) ;

L� � sup
�2B

sup
Q2Q

E [L (yi1; yi2;�;Q)] = sup
�2B

sup
Q2Q

E [L (yi1; yi2;�;Q)] ;

�n � sup
�2B;Q2Q

����� 1n
nX
i=1

L (yi1; yi2;�;Q)� E [L (yi1; yi2;�;Q)]
����� : (2)

Note that supQ2QE [L (yi1; yi2;�;Q)] is constant over B by de�nition, which implies that

L� = inf
�2B

sup
Q2Q

E [L (yi1; yi2;�;Q)]

14



Therefore, we obtain

jL�n � L�j =

����� inf�2B
sup
Q2Q

1

n

nX
i=1

L (yi1; yi2;�;Q)� inf
�2B

sup
Q2Q

E [L (yi1; yi2;�;Q)]

�����
� sup

�2B

�����supQ2Q

1

n

nX
i=1

L (yi1; yi2;�;Q)� sup
Q2Q

E [L (yi1; yi2;�;Q)]

�����
� sup

�2B;Q2Q

����� 1n
nX
i=1

L (yi1; yi2;�;Q)� E [L (yi1; yi2;�;Q)]
����� = �n

Also note that���L�n � L��� =
�����sup�2B

sup
Q2Q

1

n

nX
i=1

L (yi1; yi2;�;Q)� sup
�2B

sup
Q2Q

E [L (yi1; yi2;�;Q)]

����� � �n
It follows that ���L�n � L�n�� � ���L�n � L���+ jL�n � L�j � �n +�n = 2�n:

Suppose now that b 2 B. Note that

�L�n � sup
Q2Q

1

n

nX
i=1

L (yi1; yi2; b;Q) � �L�n � inf
�2B

sup
Q2Q

1

n

nX
i=1

L (yi1; yi2;�;Q) = �L�n � L�n

Therefore, if �n > �L�n � L�n, then we have �L�n � supQ2Q 1
n

Pn
i=1 L (yi1; yi2; b;Q) � �n, or

b 2 Bn

by de�nition of Bn. In other words, �n > �L�n � L�n, then �n > �L�n � L�n, infbn2Bn jbn � bj = 0.

Because the choice of b was arbitrary, we can conclude that

sup
b2B

inf
bn2Bn

jbn � bj = 0

if �n > �L�n � L�n. Because �n > 2�n with probability converging to one due to Lemma 2 and

choice of �n, it follows that supb2B infbn2Bn jbn � bj = 0 with probability converging to one.3

Part 2: De�ne

B(�) �
(
� : L� � sup

Q2Q
E [L (yi1; yi2;�;Q)] � �

)
It su¢ ces to show that Bn � B(�) with probability converging to one. This is because it would
imply infb2B jbn � bj < �(�) for (bn 2 Bn), which implies

sup
bn2Bn

inf
b2B

jbn � bj < �(�);

3The �probability� here actually means the inner probability. We ignore such measure theoretic subtlety in

this paper.

15



with probability converging to one. Here �(�) that can be made arbitrarily small by making

� su¢ ciently small by continuity of supQ2QE [L (yi1; yi2;�;Q)] in �, which was established in

Lemma 4. This would prove that supbn2Bn infb2B jbn � bj = op(1).
It remains to show that, for any � > 0, we have Bn � B(�) with probability converging to

one. For this purpose it su¢ ces to show that

sup
�2Bn

"
L� � sup

Q2Q
E [L (yi1; yi2;�;Q)]

#
� �:

Note that����� sup�2Bn

 
L� � sup

Q2Q
E [L (yi1; yi2;�;Q)]

!
� sup
�2Bn

 
�L�n � sup

Q2Q

1

n

nX
i=1

L (yi1; yi2;�;Q)

!�����
� sup

�2Bn

�����
 
L� � sup

Q2Q
E [L (yi1; yi2;�;Q)]

!
�
 
�L�n � sup

Q2Q

1

n

nX
i=1

L (yi1; yi2;�;Q)

!�����
�

��L� � �L�n��+ sup
�2Bn

�����supQ2Q

1

n

nX
i=1

L (yi1; yi2;�;Q)� sup
Q2Q

E [L (yi1; yi2;�;Q)]

�����
� 2�n:

By de�nition of the level set Bn, we have

sup
�2Bn

"
�L�n � sup

Q2Q

1

n

nX
i=1

L (yi1; yi2;�;Q)

#
� �n:

It follows that

sup
�2Bn

"
L� � sup

Q2Q
E [L (yi1; yi2;�;Q)]

#
� �n + 2�n

By Lemma 1 and choice of �n, we have �n + 2�n < � with probability converging to one, which

shows the requisite claim.

16



References

[1] Alvarez, J., and M. Arellano (1998), �The Time Series and Cross-Section Asymptotics

of Dynamic Panel Data Estimators�, unpublished manuscript.

[2] Amemiya, T., and T.E. MaCurdy (1986), �Instrumental Variables Estimation of an

Error-Component Model,�Econometrica, 54, 869-880.

[3] Anderson, E. (1970), �Asymptotic Properties of Conditional Maximum Likelihood Esti-

mators,�Journal of the Royal Statistical Society, Series B, 32, 283-301.

[4] Anderson, T., and C. Hsiao (1982), �Formulation and Estimation of Dynamic Models

Using Panel Data,�Journal of Econometrics, 18, 47-82.

[5] Andrews, D., and S. Berry (2003), �On Placing Bounds on Parameters of Entry Games

in the Presence of Multiple Equilibria�, unpublished manuscript.

[6] Bertsimas, D., and Tsitsiklis, J. N. (1997), Introduction to Linear Optimization,

Athena Scienti�c, Belmont, Massachusetts.

[7] Bhargava, A., and J.D. Sargan (1983), �Estimating Dynamic Random E¤ects Models

from Panel Data,�Econometrica, 51, 1635-1659.

[8] Chamberlain, G. (1980), �Analysis of Covariance with Qualitative Data,� Review of

Economic Studies, 47, 225-238.

[9] Chamberlain, G. (1982), �Multivariate Regression Models for Panel Data,� Journal of

Econometrics, 18, 5-46.

[10] Chamberlain, G. (1984), �Panel Data,� in Z. Griliches and M. Intriligator eds

Handbook of Econometrics. Amsterdam: North-Holland.

[11] Chamberlain, G. (1992), �Binary Response Models for Panel Data: Identi�cation and

Information�, unpublished manuscript.

[12] Chernozhukov, V., H. Hong, and E. Tamer (2003), �Parameter Set Inference in a

Class of Econometric Models�, unpublished manuscript.

[13] Hahn, J., and G. Kuersteiner (2001), �Asymptotically Unbiased Inference for a Dy-

namic Panel Model with Fixed E¤ects When Both n and T are Large,� Econometrica,

forthcoming.

17



[14] Hahn, J. (2001), �The Information Bound of a Dynamic Panel Logit Model with Fixed

E¤ects�, Econometric Theory 17, 913 - 932.

[15] Hahn, J., and G. Kuersteiner (2003), �Bias Reduction for Dynamic Nonlinear Panel

Models with Fixed E¤ects�, unpublished manuscript.

[16] Hahn, J., and W. Newey (2002), �Jackknife and Analytical Bias Reduction for Nonlinear

Panel Models�, unpublished manuscript.

[17] Hausman, J.A. and W.E. Taylor (1981), �Panel Data and Unobservable Individual

E¤ects,�Econometrica, 49, 1377-1398.

[18] Heckman, J.J., and B. Singer (1984), �A Method of Minimizing the Impact of Distri-

butional Assumptions in Econometric Models for Duration Data�, Econometrica 52, 271 -

320.

[19] Honoré, B.E. (1992), �Trimmed LAD and Least Squares Estimation of Truncated and

Censored Regression Models with Fixed E¤ects�, Econometrica 60, 533 - 565.

[20] Honoré, B.E. (1993), �Orthogonality Conditions for Tobit Models with Fixed E¤ects and

Lagged Dependent Variables�, Journal of Econometrics 59, 35 - 61.

[21] Honoré, B.E., and E. Kyriazidou (2000a), �Panel Data Discrete Choice Models with

Lagged Dependent Variables�, Econometrica 68, 839 - 874.

[22] Honoré, B.E., and E. Kyriazidou (2000b), �Estimation of Tobit-type models with

individual speci�c e¤ects�, Econometric Reviews 19, 341 - 366.

[23] Honoré, B.E., and E. Tamer (2002), �Bounds on Parameters in Dynamic Discrete

Choice Models�, unpublished manuscript.

[24] Horowitz, J., and C. Manski (1995), �Identi�cation and Robustness with Contaminated

and Corrupted Data�, Econometrica 63, 281 - 302.

[25] Kiefer, J., and J. Wolfowitz (1956), �Consistency of the Maximum Likelihood Esti-

mator in the Presence of In�nitely Many Incidental Parameters�, Annals of Mathematical

Statistics 27, 886 - 906.

[26] Lindsay, B.G. (1983a), �The Geometry of Mixture Likelihoods: A General Theory�, An-

nals of Statistics 11, 86 - 94.

[27] Lindsay, B.G. (1983b), �The Geometry of Mixture Likelihoods, Part II: The Exponential

Family�, Annals of Statistics 11, 783 - 792.

18



[28] Lindsay, B.G. (1995), Mixture Models: Theory, Geometry and Applications, NSF-CBMS

Regional Conference Series in Probability and Statistics, Volume 5, IMS: Hayward.

[29] Lindsay, B.G., and M.L. Lesperance (1995), �A Review of Semiparametric Mixture

Models�, Journal of Statistical Planning and Inference 47, 29 - 39.

[30] Manski, C. (1990), �Nonparametric Bounds on Treatment E¤ects�, American Economic

Review Papers and Proceedings 80, 319 - 323.

[31] Manski, C. (2003), Partial Identi�cation of Probability Distributions, Springer-Verlag:

New York.

[32] Manski, C.F., and E. Tamer (2002), �Inference on Regressions with Interval Data on a

Regressor or Outcome�, Econometrica 70, 519 - 546.

[33] Mullins, C. (2002), �Identi�cation and Estimation with Contaminated Data: When Do

Covariate Data Sharpen Inference?�, unpublished manuscript.

[34] Neyman, J., and E.L. Scott, (1948), �Consistent Estimates Based on Partially Consis-

tent Observations,�Econometrica, 16, 1-32.

[35] Stokey, N.L., and R.E. Lucas (1989), Recursive Methods in Economic Dynamics, Har-

vard University Press: Cambridge.

[36] Wolpin, K. I. (1987), �Estimating a Structural Job Search Model: the Transition from

School to Work�, Econometrica 55, 801 - 818.

[37] Wooldridge, J.M. (1997), �Multiplicative Panel Data Models without the Strict Exo-

geneity Assumption�, Econometric Theory 13, 667 - 678.

[38] Woutersen, T.M. (2002), �Robustness Against Incidental Parameters,�unpublished man-

uscript.

19


