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Abstract

I develop a simple model of social learning in which players observe others’out-

comes but not their actions. A continuum of players arrives continuously over time,

and each player chooses once-and-for-all between a safe action (which succeeds with

known probability) and a risky action (which succeeds with fixed but unknown prob-

ability, depending on the state of the world). The actions also differ in their costs.

Before choosing, a player observes the outcomes of K earlier players. There is always

an equilibrium in which success is more likely in the good state, and this alignment

property holds whenever the initial generation of players is not well-informed about

the state. In the case of an outcome-improving innovation (where the risky action

may yield a higher probability of success), players take the correct action as K →∞.

In the case of a cost-saving innovation (where the risky action involves saving a cost

but accepting a lower probability of success), ineffi ciency persists as K → ∞ in any

aligned equilibrium. Whether ineffi ciency takes the form of under-adoption or over-

adoption also depends on the nature of the innovation. Convergence of the population

to equilibrium may be non-monotone.
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1 Introduction

The development and diffusion of new technologies is a fundamental driver of economic

growth. But some kinds of technologies seem to be introduced and adopted at a higher

rate than others. In particular, innovations that improve observable outcomes– such as crop

yields, health outcomes, or manufacturing output– while increasing costs are often more

numerous and more successful than innovations that lead to worse outcomes but more than

make up for this by reducing costs.

Consider the US healthcare sector, which in recent decades has experienced both rapid

technological progress and rapidly rising costs (Newhouse, 1992; Cutler, 2004; Chandra and

Skinner, 2012). Nelson et al. (2009) categorize 2,128 cost-effectiveness ratios from 887 med-

ical studies published from 2002 to 2007 according to whether the studied innovations (i)

increase or reduce costs, and (ii) increase or reduce quality of care, measured in quality-

adjusted life years. They find that the innovations decreased cost and increased quality in

16% of cases, increased cost and decreased quality in 9% of cases, increased both cost and

quality in 72% of cases, and decreased both cost and quality in 1.6% of cases. There are

thus vastly more innovations that improve quality but also increase costs than innovations

that save costs but reduce quality.1 Furthermore, several innovations in the latter category

provide cost savings that greatly outweigh the corresponding reduction in quality, on any

reasonable criterion. For example, treating multivessel coronary artery disease with per-

cutaneous coronary intervention (“angioplasty”) rather than coronary artery bypass graft

surgery (“bypass”) is reported to lead to a loss of 13 quality-adjusted life hours, while saving

$4,944: a saving of over $3,000,000 per quality-adjusted life year.

Another leading example– which I will return to throughout the paper– is the overuse

of agricultural fertilizer in the developing world. In the context of maize farming in Western

Kenya, Duflo, Kremer, and Robinson (2008) document a strong monotonic relationship

between the amount of fertilizer used per plant and the resulting yield, with 1 tsp. of

fertilizer per plant (the amount recommended by the government, and also the maximum

amount they report being used by farmers) producing the highest yield. But fertilizer is not

1There are a host of possible explanations for this pattern. I cite this case only as an example of a
shortage of cost-saving innovation.
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free, and the relationship between amount of fertilizer per plant and profits is inverse U-

shaped, with a maximum at 1/2 tsp. of fertilizer per plant. Indeed, most farmers (including

those who use the recommended 1 tsp. per plant) actually overuse fertilizer to the point

where their net returns from fertilizer utilization are strongly negative, and the authors’

calculations suggest that reducing fertilizer use from 1 tsp. to 1/2 tsp. per plant would

increase farmers’net income by about one quarter. Given the large potential gains, why

haven’t farmers learned to use less fertilizer?

This paper presents a simple model of social learning, which, among other results, pro-

vides a general rationale for the scarcity of cost-saving innovations in fields such as healthcare

and agriculture in the developing world (Foster and Rosenzweig, 2010) and manufacturing

(Bloom and Van Reenen, 2010; Bloom et al., 2013). I argue that, when individuals learn

about the quality of new innovations by observing others’outcomes, it is hard to learn about

the effectiveness of a cost-saving innovation, because it is not clear if observing good out-

comes is good news or bad news about the innovation. This diffi culty in learning about

cost-saving innovations prevents effi cient adoption of these technologies, which in turn could

dis-incentivize research on cost-saving technologies.2

In the model, a continuum of players arrive continuously over time, and each player

chooses once-and-for-all between a safe action (“status quo”) and a risky action (“innova-

tion”). The safe action yields a good outcome (“success”) with known probability, while the

risky action yields a good outcome with a fixed but unknown probability, which depends

on the state of the world. For example, the probability that a maize crop fails to grow in

a certain type of soil might be 10% when treated with 1 tsp. of fertilizer (the status quo

technology), while it may be 20% or 30% when treated with 1/2 tsp. (the innovation),

depending on the (unknown) effectiveness of using less fertilizer on this soil.3 The risky

2This last point may depend on the organization of the R&D sector. Public-spirited governments and
non-profits presumably want to fund innovations that will be adopted effi ciently, while under some market
structures private firms might prefer to fund innovations that will be ineffi ciently overadopted. The question
of how technology adoption interacts with the R&D incentives of private firms is an interesting one but is
beyond the scope of the current paper. In any case, public spending is of course a critical component of R&D
in many sectors, accounting for over one third of global R&D spending on biomedical technologies (Chakma
et al., 2014) and over half of global R&D spending on agriculture (Pray and Fuglie, 2015).

3This example is inspired by a study of Duflo, Kremer, Robinson, and Schilbach (see Schilbach (2015)
for preliminary results), who try to encourage Kenyan maize farmers to use less fertilizer by disseminating
1/2 tsp. measuring spoons.
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action also has a known cost advantage or disadvantage relative to the safe action, which

is suffi cient for the risky action to be optimal in the good state but not the bad state. For

example, the cost-saving of using 1/2 tsp. of fertilizer rather than 1 tsp. is assumed to be

suffi cient to justify an increase in the rate of crop failures from 10% to 20%, but not to 30%.

Before making her choice, a player observes the outcomes (“crop success,”“crop failure”) of

a random sample of K existing players in the population.4 I study the long-run behavior of

the resulting population dynamic.

A first result is that there is always an equilibrium (i.e., a steady state of the population

dynamic) in which success is more likely in the good state, so observing success is good

news about the state. In the fertilizer example, this says there is always an equilibrium

where observing successful harvests is good news about the effectiveness of using 1/2 tsp.. I

call such an equilibrium– where success is good news– aligned. One of my main results is

that there is a compelling reason to focus attention on aligned equilibria. In particular, I

show that the equilibrium population dynamic visits only aligned points whenever the initial

adoption rates are aligned, and the initial adoption rates will be aligned whenever the initial

generation of players is not well-informed about the state. The intuition is that passing from

a point where success is good news to a point where success is bad news requires passing

through a point where each observation is completely uninformative, and this is impossible

because when observations are uninformative the population dynamic drifts back toward the

initial point.

These results are important because the effi ciency of technology adoption at an aligned

equilibrium depends dramatically on the nature of the innovation. There turns out to be a

key distinction between the case of an outcome-improving innovation– where the risky action

may yield a higher probability of success– and that of a cost-saving innovation– where the

risky action always yields a lower probability of success but saves costs.5 For example, a new

high-yield variety of maize (which is more expensive for farmers to use but may yield a larger

harvest with higher probability than traditional maize) is an outcome-improving innovation,

4Each outcome is assumed to be binary, which in the fertilizer application corresponds to assuming that
each crop either succeeds or completely fails.

5This distinction is unrelated to the distinction between good news and bad news learning familiar from
the literature on strategic experimentation.
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while using less fertilizer is a cost-saving innovation.

If an outcome-improving innovation is adopted effi ciently– that is, fully adopted in the

good state and fully rejected in the bad state– the resulting adoption rates are aligned. In

particular, the success rate in the good state equals the high success rate from using the

(effective) innovation, while the success rate in the bad state equals the lower success rate

from using the status quo. There is thus no conflict between effi ciency and alignment, and,

as I show, the innovation is adopted effi ciently in equilibrium when players have enough data

(i.e., K is large) and the population has enough time to learn.

In contrast, if a cost-saving innovation is adopted effi ciently, the resulting adoption rates

aremisaligned : the success rate in the good state equals the lower success rate from using the

innovation, and the success rate in the bad state equals the higher success rate from using the

status quo. For example, if the innovation of using only 1/2 tsp. of fertilizer is adopted when

it is cost-effective and is rejected when it is cost-ineffective (in favor of the high-cost/high-

yield status quo of 1 tsp.), then the resulting crop failure rate will be 20% when using 1/2

tsp. is cost-effective and 10% when using 1/2 tsp. is cost-ineffective. This implies that, if

1/2 tsp. is adopted effi ciently, observing a successful harvest must be bad news about the

effectiveness of 1/2 tsp.. But, as I have argued, so long as the initial generation of farmers is

not already well-informed, in equilibrium observing a successful harvest is always good news

about the effectiveness of 1/2 tsp. This implies that equilibrium adoption of the 1/2 tsp.

measure is ineffi cient, regardless of how much data is available to the farmers and how long

they have had to learn.

How can rational agents fail to learn even as they observe more and more outcomes? The

only explanation is that each individual observation must become completely uninformative

in the K → ∞ limit: that is, the probability of success must become exactly the same in

each state. The situation is thus one of confounded learning (McLennan, 1984; Smith and

Sørensen, 2000). For example, suppose again that the crop failure rate is 10% with 1 tsp. of

fertilizer and either 20% or 30% with 1/2 tsp., depending on the state. Then, as K → ∞,

the equilibrium adoption rates of 1/2 tsp. in the bad state (x0) and the good state (x1) must
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satisfy the relationship

(1− x1) (.1) + x1 (.2)︸ ︷︷ ︸
failure rate in good state

= (1− x0) (.1) + x0 (.3)︸ ︷︷ ︸
failure rate in bad state

,

or x1 = 2x0, so that observing a crop failure is completely uninformative about the effec-

tiveness of using 1/2 tsp.. This example also illustrates the ineffi ciency of aligned equilibria

with a cost-saving innovation: effi ciency corresponds to adoption rates (x0 = 0, x1 = 1), so

the requirement that x1 = 2x0 implies substantial ineffi ciency.

The main finding of this paper is thus that outcome-improving innovations are adopted

effi ciently, but cost-saving innovations are adopted ineffi ciently. I also investigate several

extensions of the model and show that this result continues to hold in a range of richer

physical and informational environments.

One key feature of the model deserves immediate discussion: I assume learning is outcome-

based, in that players observe each other’s outcomes (e.g., crop yields), but not their actions

(e.g., fertilizer utilization) or payoffs (e.g., profits). This contrasts with most existing models

of social learning, which assume learning is action-based : actions are observed, but not out-

comes. Which form of learning is more appropriate depends on the application. For example,

Banerjee (1992) famously considers the example of herding on the choice of a restaurant,

which certainly seems like a case where action-based learning is more reasonable: one can

tell at a glance if tables are full and there is a line out the door, while it is harder to tell if

diners are enjoying their meals. In general, action-based learning is likely the more appro-

priate model for settings where actions correspond to consumption choices and outcomes to

subjective utility realizations. On the other hand, in settings where actions correspond to

choosing inputs in a production process, outcome-based learning is often more natural.

Many economic applications of social learning fall into this category. Consider the canon-

ical example of the choice of agricultural or health technologies in the developing world. In

this setting, it seems natural to assume that farmers can see their neighbors’crop yields more

easily than they can observe what seed varieties they planted or how much fertilizer they

used; or that parents can see what diseases their neighbors’children contract more clearly
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than they can observe what preventative medications they took.6 Another example is given

by process innovations in manufacturing, where firms can presumably observe their competi-

tors’output levels more accurately than their production techniques. For instance, a firm

might not know if a competitor has adopted a certain lean manufacturing technique, such as

just-in-time delivery of inputs by suppliers, while being able to observe how frequently the

competitor stocks out of its inventory.7

1.1 Related Literature

This paper draws on ideas and modeling techniques from several branches of the literature

on social learning and experimentation.

The paper contributes to the literature on social learning and herding following Banerjee

(1992), Bikhchandani, Hirshleifer, and Welch (1992), and Smith and Sørensen (2000). See

Chamley (2004) for a survey. The key difference from most of this literature is that in the

current paper outcomes are observable and actions are not.

On a technical level, the closest paper in this literature is Banerjee and Fudenberg (2004).

Banerjee and Fudenberg assume that actions are perfectly observed, but the models are

otherwise closely related. Their paper introduced the approach of studying deterministic

social learning dynamics in a continuum population with small sample (“word-of-mouth”)

learning.8 An important difference is that under perfect observability of actions the so-called

“improvement principle”applies, which states that average welfare in the population is non-

decreasing over time; this follows because each player can simply copy an earlier action. The

improvement principle leads to asymptotic agreement on actions and often effi ciency. The

assumption of perfect monitoring thus implies a rather optimistic view of social learning. In

contrast, in my model the improvement principle does not hold (as will become clear), and

6See Foster and Rosenzweig (2010) for a survey of the large literature on social learning and technology
adoption in development. It is interesting to note that under-adoption of cost-saving innovations appears
to be a particularly severe problem in the development context. Besides the fertilizer example, the over-
prescription of antibiotics in addition to oral rehydration therapy for diarrhea is another well-known and
important case; see Das et al. (2016) for some recent evidence.

7Bloom and Van Reenen (2010) document striking differences in the quality of management practices
across firms and countries. In the context of the Indian textile industry, Bloom et al. (2013) attribute firms’
failure to adopt superior production techniques to informational barriers.

8Smith and Sørensen (2014) consider a similar model with a discrete population.
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equilibrium features heterogeneous actions and persistent ineffi ciency.

A few papers consider the possibility that players might observe both actions and out-

comes in social learning models. Many of these papers focus on documenting the possibility

of confounded learning: outcomes becoming uninformative about the state.9 Confounded

learning arises asymptotically as K → ∞ in the cost-saving case of my model. However,

my main contribution is characterizing how the extent and form of equilibrium ineffi ciency

depend on the nature of the innovation, not pointing out that confounding arises per se. An-

other major point of contrast with this literature is that canonical papers such as McLennan

(1984), Piketty (1995), and Smith and Sørensen (2000) emphasize that confounded learning

is a robust equilibrium outcome in their models, while for any finite K confounded learning

cannot occur in equilibrium in my model: instead, the fact that the equilibrium population

dynamic cannot reach states where confounding would occur is a key factor in determining

the equilibrium trajectory. Moreover, the possibility of confounded learning arises in my

model because the adoption rate and the success rate conditional on adoption may not be

separately identified, which differs from the existing literature that assumes that actions

are observable. The underlying analysis is also quite different: McLennan and Smith and

Sørensen consider stochastic models and use Markov-martingale arguments to show that the

equilibrium trajectory converges with positive probability to a point where learning is con-

founded, while my model is deterministic (conditional on the state) and, again, confounding

cannot arise in equilibrium for finite K.

Banerjee (1993) and Acemoglu and Wolitzky (2014) consider sequential social learning

models with imperfect monitoring and limited memory. It is possible to view these models as

discrete-time analogues of (a special case of) the current model when the entire population

turns over each period. As in my paper, a key issue in these works is that players must keep

track of the probability with which each action is played in each state of the world, and must

use this information to correctly interpret the observed outcomes.10 The main analysis and

9McLennan (1984) and Kiefer (1989) present classic early examples of confounded learning. Bala and
Goyal (1995) and Smith and Sørensen (2000) consider confounded learning in sequential social learning
models. Piketty (1995) studies confounded learning in a continuum population social learning model in a
political economy application. Easley and Kiefer (1988) and Aghion, Bolton, Harris, and Jullien (1992)
provide characterizations of confounded learning in single-agent experimentation problems. See Chamley
(2004, Chapter 8) for a textbook treatment.
10The same issue arises in search and matching models with incomplete information, and indeed the
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results in these papers are however completely different, as they focus on learning dynamics

and the possibility of cycles rather than long-run effi ciency properties.

Social learning also features in the recent literature on collective experimentation (Bolton

and Harris, 1999; Keller, Rady, and Cripps, 2005; see Hörner and Skrzypacz (2016) for

a survey.) This literature is less closely related in other respects, because the fact that

players in my model act only once eliminates all dynamic strategic considerations. A couple

papers do however combine elements of herding and collective experimentation. Murto and

Välimäki (2011) and Wagner (2017) consider stopping games with observational learning,

focusing on ineffi ciencies due to excess delay. More closely related, Frick and Ishii (2016)

study technology adoption in a model with a continuum of agents. The main modeling

differences are that in their model there is no uncertainty about the adoption rate and there

is no word-of-mouth learning; instead, their (long-lived) players wait to receive a public and

perfectly informative signal of the state, which arrives at a higher rate when more players

adopt the innovation. In terms of results, the emphasis in their paper is on the optimal

timing of adoption and the shape of the resulting technology adoption curve, while there is

no timing decision in my model and most of my results concern long-run effi ciency. Kremer,

Mansour, and Perry (2014) and Che and Hörner (2017) take a mechanism design approach

to incentivizing technology adoption in related models.

2 Model

This section describes the environment, the distinction between outcome-improving and

cost-saving innovations, and the solution concept.

2.1 Environment

There are two states, θ ∈ {0, 1}, two actions, a ∈ {0, 1}, and two outcomes, y ∈ {0, 1}. The

prior probability of θ = 1 (“the state is good,”“the innovation is effective”) is p ∈ (0, 1).

There is a continuum of players, arriving continuously over time, and each player chooses

presence of small sample learning makes my model a kind of search model. For a striking recent contribution
to the literature on information aggregation and search, see Lauermann and Wolinsky (2016).
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an action once. A player who chooses action a = 1 (“risky action,”“innovation,”“adopt”)

when the state is θ gets outcome y = 1 (“success”) with probability πθ and gets outcome

y = 0 (“failure”) with probability 1− πθ, with π0 < π1. A player who chooses action a = 0

(“safe action,”“status quo”) gets outcome y = 1 with probability χ and gets outcome y = 0

with probability 1 − χ, regardless of the state. A player’s payoff is y − ca, where c ∈ R is

the cost of taking action 1 (relative to the cost of taking action 0, which is normalized to 0).

Note that c can be positive or negative.

Before making her choice, each player observes the outcomes (and not the actions or

payoffs) of a random sample of K earlier players. The resulting population dynamic and

corresponding equilibrium concept are defined formally below.

To rule out trivial cases, throughout the paper I impose assumptions that will imply that

neither always choosing the safe action (in both states) nor always choosing the risky action

is an equilibrium.

First, I assume that the risky action is optimal in the good state, while the safe action is

optimal in the bad state:

π1 − c > χ > π0 − c.

This implies the existence of a cutoffbelief p∗ ∈ (0, 1) at which a player is indifferent between

the two actions, given by p∗π1 + (1− p∗) π0 − c = χ.

The assumption that implies that always choosing the safe action is not an equilibrium

is

p > p∗. (1)

That is, the risky action is optimal under the prior.

The assumption that implies that always choosing the risky action is not an equilibrium

is (
1− π0

1− π1

)K
>

p

1− p
1− p∗
p∗

. (2)

As will become clear, this says that, if a player believes that everyone else adopts the inno-

vation in both states and all K outcomes she observes are failures (y = 0), this is suffi ciently

bad news that she prefers not to adopt herself.
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2.2 Outcome-Improving vs. Cost-Saving Innovations

The model admits quite different interpretations depending on the ordering of χ and π1.

When χ < π1, the risky action may yield the good outcome with higher probability

than the safe action. I call this the outcome-improving innovation case. Note that χ < π1

and assumptions (1) and (2) are consistent with c being positive or negative, so that some

innovations with c < 0 are classified as outcome-improving. The χ < π1 case captures the

following situations:

• The safe action is planting a traditional crop variety, and the risky action is planting a

new variety that could give higher or lower average yields, depending on the underlying

soil suitability.

• The safe action is using a standard medical technology, and the risky action is using a

more expensive new technology that promises improved health outcomes, where it is

uncertain if the degree of improvement will be suffi cient to justify the expense.

I refer to the extreme case where χ = 0 as the pure outcome-improving innovation case.

An example would be if the risky action corresponds to planting a completely new crop for

the first time: depending on the soil conditions, the new crop may be more or less likely to

grow if planted, but it will never grow without being planted.

When instead χ > π1, the risky action always yields the good outcome with lower prob-

ability than the safe action. Note that the assumption π1− c > χ implies c < 0 in this case.

The uncertainty facing the players is thus whether the reduced probability of receiving the

good outcome is substantial enough to outweigh the lower cost of the risky action. Examples

captured by this case include:

• The safe action is using the standard amount of fertilizer, and the risky action is using

less fertilizer.

• The safe action is planting a traditional crop variety, and the risky action is planting

an unfamiliar variety that requires less labor to cultivate.11

11Bustos, Caprettini, and Ponticelli (2016) argue that genetically engineered, herbicide-resistant
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• The safe action is using traditional inventory-management techniques, and the risky

action is using just-in-time delivery of inputs.

• The safe action is getting a standard vaccine, and the risky action is forgoing the

vaccine.

Since the χ > π1 case involves assuming the risk of a worse outcome to save a cost, I call

this the case of a cost-saving innovation. Finally, the case where χ = 1 (e.g., the standard

vaccine is perfectly effective) is that of a pure cost-saving innovation.

2.3 Adoption Rates and Inferences

As described above, each player observes a random sample of earlier players’outcomes before

taking her action. (The behavior of the initial generation of players is discussed later.) A

player must use her sample to draw an inference about the state, θ. To do so, she must take

into account the equilibrium adoption rate of the innovation in each state of the world. Due

to the continuum population, these adoption rates are modeled as deterministic functions

of the state and calendar time: given an equilibrium, the resulting adoption rate in state

θ at time t is denoted Xθ (t). The interpretation is that Xθ (t) is the equilibrium fraction

of players existing in the population at time t who take action 1 when the state is θ. As

equilibrium objects, the conditional adoption rates are “known”to a player when she enters

the population: a player who enters the population at time t knows that the adoption rate

is either X0 (t) or X1 (t), depending on the state.12

If the adoption rate in state θ at some time t equals xθ, then the fraction of existing

players at time t who obtained the good outcome y = 1 when the state is θ equals

σθ (xθ) := xθπθ + (1− xθ)χ.

I call σθ (xθ) the success rate in state θ given adoption rate xθ. When a new player enters

soybeans– which obviate the need for labor-intensive weeding– constitute a cost-saving innovation in this
sense. This contrasts with the many high-yield crop varieties introduced during the Green Revolution, which
are typically viewed as output-improving innovations.
12The model thus implicitly assumes that players know calendar time. Unknown calendar time is discussed

in Section 6.
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the population at time t, if the state is θ then each of her observations is a success with

independent probability σθ (xθ). Thus, by Bayes’ rule, a new player’s assessment of the

probability that θ = 1 after observing k successes, given equilibrium adoption rates x0 and

x1, equals

p (k;x0, x1) :=

[
1 +

1− p
p

σ0 (x0)k (1− σ0 (x0))K−k

σ1 (x1)k (1− σ1 (x1))K−k

]−1

. (3)

A simple but important observation is that p (k;x0, x1) is increasing in k at the pair

(x0, x1) if and only if the success rate is higher in state 1: σ1 ≥ σ0, or equivalently

x1 (π1 − χ) ≥ x0 (π0 − χ) . (4)

There are thus three possible cases (recall that p∗ is the cutoff belief at which players are

indifferent between the two actions):

1. (4) holds with strict inequality, there is at most one integer k∗ satisfying p (k∗;x0, x1) =

p∗, and p (k;x0, x1) ≥ p∗ if and only if k ≥ k∗.

2. (4) fails, there is at most one integer k∗ satisfying p (k∗;x0, x1) = p∗, and p (k;x0, x1) ≥

p∗ if and only if k ≤ k∗.

3. (4) holds with equality, and p (k;x0, x1) = p > p∗ for all k.

I call a pair of adoption rates (x0, x1) that satisfies (4) aligned and call adoption rates

that satisfy the opposite of (4) misaligned. An aligned point (x0, x1) is thus one where

observing more successes is better news about the state in the monotone likelihood ratio

sense (Milgrom, 1981), so that the informational content and utility content of the outcome

y line up. For example, in the fertilizer application, a pair of adoption rates is aligned

if observing crop failures is bad news about the effectiveness of using less fertilizer. Note

that, if χ ≤ π1, then (x0, x1) is aligned whenever x0 ≤ x1; and if χ ≥ π1, then (x0, x1) is

aligned whenever x0 ≥ x1. In particular, points (x0, x1) on the 45◦ line are always aligned.

Note also that the effi cient point (x0 = 0, x1 = 1)– corresponding to complete rejection of

the innovation in the bad state and complete adoption in the good state– is aligned if and

only if χ ≤ π1. Thus, the effi cient point is aligned in the outcome-improving innovation
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case and misaligned in the cost-saving innovation case. Let A ⊆ [0, 1]2 denote the set of all

aligned points (x0, x1). Note that A is compact and convex.

2.4 Equilibrium Population Dynamics

I can now define the equilibrium population dynamic. An equilibrium population dynamic

captures the process whereby new players enter the population at rate 1 and best-respond to

random samples of existing players’outcomes; it is essentially a perfect Bayesian equilibrium

of this continuum-player, continuous-time game.13 More precisely, an equilibrium population

dynamic specifies, at each point in time, (i) the equilibrium adoption rate in each state, (ii) a

number of observed successes k∗ marking the cutoff above or below which new players adopt

(depending on whether or not (4) holds), and (iii) the probability s with which new players

adopt when they observe exactly k∗ successes, if this observation leaves them indifferent.

For the formal definition, let φθ (k;xθ) denote the probability that a new player observes

k successes when the state is θ and the adoption rate is xθ:

φθ (k;xθ) :=

(
K

k

)
σθ (xθ)

k (1− σθ (xθ))
K−k .

Given that players follow cutoff strategies, equation (5) below says that, in each state,

the derivative of the adoption rate equals the adoption rate among new players minus the

adoption rate among existing players.

Definition 1 An equilibrium path (or equilibrium population dynamic) is a list of mea-

surable functions of time

(X0 : R+ → [0, 1] , X1 : R+ → [0, 1] , k∗ : R+ → {0, . . . , K} , s : R+ → [0, 1])

such that
13The inflow of new players is modeled as in Banerjee and Fudenberg (2004). There are two mathematically

equivalent interpretations. The first is that new players enter at arithmetic rate 1 and existing players exit
at arithmetic rate 1, keeping the overall population size constant. The second is that new players enter
at exponential rate 1 and no players exit, so the overall population size increases over time. Under either
interpretation, Xθ (t) is the fraction of the existing population taking action 1 in state θ at time t.
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1. Trajectories respect individual optimization: for θ = 0, 1, Xθ is absolutely continuous,

with derivative almost everywhere given by

Ẋθ (t) =



φθ (k∗ (t) ;Xθ (t)) s (t) +
∑K

k=k∗(t)+1 φθ (k;Xθ (t))−Xθ (t)

if (4) holds at (X0 (t) , X1 (t)) ;

φθ (k∗ (t) ;Xθ (t)) s (t) +
∑k∗(t)−1

k=0 φθ (k;Xθ (t))−Xθ (t)

if (4) fails at (X0 (t) , X1 (t))

. (5)

2. Cutoffs are consistent with Bayes’rule:

p (k∗ (t)− 1;X0 (t) , X1 (t)) ≤ p∗ ≤ p (k∗ (t) ;X0 (t) , X1 (t)) if (4) holds at (X0 (t) , X1 (t));

p (k∗ (t) ;X0 (t) , X1 (t)) ≥ p∗ ≥ p (k∗ (t) + 1;X0 (t) , X1 (t)) if (4) fails at (X0 (t) , X1 (t)).

3. Decisions are optimal at the cutoff:

s (t)

 = 1 if p (k∗ (t) ;X0 (t) , X1 (t)) > p∗

∈ [0, 1] if p (k∗ (t) ;X0 (t) , X1 (t)) = p∗
.

Proposition 1 For any point x̂ ∈ [0, 1]2, there exists an equilibrium path (X0, X1, k
∗, s) with

(X0 (0) , X1 (0)) = x̂.

Proof. Define the correspondence F : [0, 1]2 ⇒ [0, 1]2 by letting F (x0, x1) be the set of pairs

(x′0, x
′
1) ∈ [0, 1]2 for which there exist k∗ ∈ {0, . . . , K} and s ∈ [0, 1] such that either

x′θ = φθ (k∗;xθ) s+

K∑
k=k∗+1

φθ (k;xθ) for θ = 0, 1, (6)

p (k∗ − 1;x0, x1) ≤ p∗ ≤ p (k∗;x0, x1) , and

s

 = 1 if p (k∗;x0, x1) > p∗

∈ [0, 1] if p (k∗;x0, x1) = p∗
, (7)

or

x′θ = φθ (k∗;xθ) s+

k∗−1∑
k=0

φθ (k;xθ) for θ = 0, 1, (8)

p (k∗;x0, x1) ≥ p∗ ≥ p (k∗ + 1;x0, x1) , and (7).
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Note that, if a pair of absolutely continuous functions (X0 : R+ → [0, 1] , X1 : R+ → [0, 1])

satisfies (
Ẋ0 (t) , Ẋ1 (t)

)
+ (X0 (t) , X1 (t)) ∈ F (X0 (t) , X1 (t)) (9)

almost everywhere, then (X0, X1) is an equilibrium path (together with the corresponding

values of k∗ and s at points where (X0, X1) is differentiable, with the values of k∗ and s

at points of non-differentiability of (X0, X1) selected arbitrarily). I claim that F is non-

empty, compact- and convex-valued, and upper hemi-continuous. The proof is routine and

is deferred to Appendix B (available online). Note also that any solution to (9) satisfies

Ẋθ (t) ∈ [−Xθ (t) , 1−Xθ (t)] almost everywhere, and hence cannot escape the compact set

[0, 1]. Under these conditions, existence of a solution to the differential inclusion (9) for an

arbitrary initial point is standard. See, e.g., Aubin and Cellina (1984), Theorem 2.1.4.

I do not have a result that the equilibrium path from an arbitrary initial point is always

unique.14 If there are multiple equilibrium paths, the solution concept implicitly assumes all

players coordinate on the same one.

Finally, some results will concern steady states of the population dynamic.

Definition 2 An equilibrium (or steady state) is a constant equilibrium path.

I refer to an equilibrium in which (4) holds as an aligned equilibrium and refer to an

equilibrium in which the opposite of (4) holds as an misaligned equilibrium. It is immediate

that some equilibrium exists. This follows because equilibria correspond to fixed points of

the correspondence F introduced in the proof of Proposition 1, and F satisfies the conditions

of Kakutani’s fixed point theorem.

3 Invariance and Ineffi ciency of Aligned Points

My first main result is that any equilibrium path with an aligned initial point visits only

aligned points: that is, the set of aligned points is forward invariant. As I will argue,

the condition that the initial point is aligned is quite mild. Moreover, with a cost-saving

14Standard uniqueness results for differential equations/inclusions require Lipschitz continuity conditions
that may fail here (e.g., Aubin and Cellina (1984), Chapter 2.4). In particular, the correspondence F in the
proof of Proposition 1 is discontinuous when p (k∗;x0, x1) = p∗.
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innovation, welfare at any aligned point is bounded away from the first-best, regardless of

the sample size K. Thus, as long as the initial point is aligned, cost-saving innovations are

adopted ineffi ciently no matter how much time and data are available to the players. In

contrast, Section 4 shows that outcome-improving innovations are adopted effi ciently when

t and K are large.

Theorem 1 If (X0, X1, k
∗, s) is an equilibrium path and (X0 (0) , X1 (0)) is aligned, then

(X0 (t) , X1 (t)) is aligned for all t ∈ R+. In addition, an aligned equilibrium exists.

To see the intuition, let L denote the boundary between the aligned and misaligned

regions of the unit square: that is, L is the line with equation x1 (π1 − χ)− x0 (π0 − χ) = 0.

In the aligned region, observing a success is good news about θ; in the misaligned region,

observing a success is bad news; and close to L, observing a success is almost completely

uninformative. Thus, for any fixed sample size K, players’samples contain little information

about the state when the population dynamic is suffi ciently close to L. In particular, (1)

implies that new players always adopt when the population dynamic is close to L. This

behavior drives the population dynamic toward the aligned point (x0, x1) = (1, 1), and hence

drives the dynamic into the interior of the aligned set A. The population dynamic can thus

never exit A.15 See Figures 1 and 2 for illustrations in the cost-saving and outcome-improving

cases, respectively– the question marks in the figures indicate that I do not characterize

dynamics away from L for a fixed sample size K.16

Proof. Assume X0 (0) (π0 − χ) ≤ X1 (0) (π1 − χ). As X0 and X1 are continuous, if there ex-

ists a time t′ with X0 (t′) (π0 − χ) > X1 (t′) (π1 − χ), then by the intermediate value theorem

and the definition of the derivative there must exist another time t where X0 (t) (π0 − χ) =

X1 (t) (π1 − χ) but it is not the case thatX0 andX1 are differentiable at t with Ẋ0 (t) (π0 − χ) <

Ẋ1 (t) (π1 − χ) (in particular, the time sup {t < t′ : X0 (t) (π0 − χ) = X1 (t) (π1 − χ)} must

have this property). But, if X0 (t) (π0 − χ) = X1 (t) (π1 − χ) then p (k;X0 (τ) , X1 (τ)) ≈

p > p∗ for all k ∈ {0, . . . , K} and all τ in a neighborhood of t, and hence Xθ is differentiable

15This argument does not depend on the fact that the point toward which the population dynamic drifts
when the success rate is the same in both states is the extreme point (1, 1): all that matters is that this point
is aligned. Theorem 1 therefore generalizes to a range of environments without this feature. See Section 6.
16Figure 2 is drawn for the case χ < π0. When χ ∈ (π0, π1), the line L does not intersect the unit square.
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Figure 1: Phase diagram for the equilibrium population dynamic, cost-saving case (χ > π1),
arbitrary K.

Figure 2: Phase diagram for the equilibrium population dynamic, outcome-improving case
with χ < π0, arbitrary K.
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at t with Ẋθ (t) = 1−Xθ (t) for θ = 0, 1.17 Therefore,

Ẋ0 (t) (π0 − χ) = π0 − χ−X0 (t) (π0 − χ)

= π0 − χ−X1 (t) (π1 − χ)

< π1 − χ−X1 (t) (π1 − χ) = Ẋ1 (t) (π1 − χ) .

It follows that there can be no such time t′. Thus, A is forward invariant.

As A is forward invariant, compact, and convex, and F is non-empty, compact- and

convex-valued, and upper hemi-continuous, existence of a fixed point of F in A follows from

standard results on differential inclusions. See, e.g., Aubin and Cellina (1984), Corollary

2.2.3.

Alignment of the initial point is a mild requirement. If the initial generation of players

makes its decisions on the basis of the prior alone, the initial point will be the aligned point

(X0 (0) , X1 (0)) = (1, 1). If the initial generation also receives some exogenous signals of the

state before making its decisions, the initial point will be aligned as long as these signals are

unlikely to overturn the prior: see Section 6 for details. Theorem 1 thus justifies focusing on

aligned points.

Being able to focus on aligned point is important because, with a cost-saving innovation,

welfare at every aligned point is bounded away from the first-best. The intuition is simply

that, with a cost-saving innovation, it is effi cient for failure to be more likely in the good

state: at the first-best, players use the low-cost, high-failure innovation in the good state and

use the high-cost, low-failure status quo in the bad state. But, by definition, at an aligned

point failure is less likely in the good state. So no aligned point can be close to effi cient.

Note that expected welfare at the point (x0, x1) equals

p [x1 (π1 − c) + (1− x1)χ] + (1− p) [x0 (π0 − c) + (1− x0)χ] . (10)

17Proof: If p (k;X0 (τ) , X1 (τ)) > p∗ for all k ∈ {0, . . . ,K} and all τ in a neighborhood of t, then
Ẋθ (τ) = 1−Xθ (τ) for all τ at which Xθ is differentiable in a neighborhood of t. But then

lim
ε→0

1

ε
(Xθ (t+ ε)−Xθ (t)) = lim

ε→0

1

ε

∫ t+ε

t

Ẋθ (τ) dτ = lim
ε→0

1

ε

∫ t+ε

t

(1−Xθ (τ)) dτ = 1−Xθ (t) ,

where the first equality uses absolute continuity of X and the last uses continuity.
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In particular, first-best expected welfare equals p (π1 − c) + (1− p)χ.

Proposition 2 If χ > π1 then expected welfare at every aligned point is uniformly bounded

away from effi ciency.

More specifically, if χ > π1 then expected welfare at every aligned point falls short of the

first-best by at least

(1− p)
(
χ− π1

χ− π0

)
(χ− π0 + c) > 0. (11)

Proof. First-best expected welfare exceeds expected welfare at the point (x0, x1) by the

amount

p (1− x1) (π1 − c− χ) + (1− p)x0 (χ− π0 + c) .

If χ > π1 then at any aligned point x0 ≥ χ−π1
χ−π0x1. Hence, this excess is at least

p (1− x1) (π1 − c− χ) + (1− p)x1

(
χ− π1

χ− π0

)
(χ− π0 + c) .

This expression is decreasing in x1, as p (χ− π0) (π1 − c− χ) > (1− p) (χ− π1) (χ− π0 + c).

(To see this, rearrange this inequality to p (π1 − π0) (−c) > (χ− π1) (χ− π0 + c), and note

that −c > χ− π1 and p (π1 − π0) > χ− π0 + c, by (1).) Therefore, ineffi ciency is minimized

at x1 = 1, which gives (11).

To interpret (11), note that the proof shows that the minimal ineffi ciency at an aligned

point is achieved at the point (x0, x1) =
(
χ−π1
χ−π0 , 1

)
. At this point, the correct action is always

taken in state 1, and the wrong action is taken in state 0 with probability χ−π1
χ−π0 . As the loss

from taking the wrong action in state 0 is χ−π0 + c, it follows that the minimal ineffi ciency

at any aligned point is (1− p)
(
χ−π1
χ−π0

)
(χ− π0 + c).

To get a sense of the magnitude of this loss, note that a completely uninformed player

who follows the prior and always takes action 1 suffers a loss of (1− p) (χ− π0 + c). Thus,

the ratio of the minimal loss at an aligned point to the loss of an uninformed player equals
χ−π1
χ−π0 . Note that this loss ratio is increasing in χ and π0 but decreasing in π1. In this sense,

social learning is potentially more powerful when the status quo is less effective and outcomes

under the innovation are less noisy.
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4 Large Samples: Learning vs. Confounding

My second main result is that outcome-improving innovations are adopted effi ciently when

samples are large enough and the population has had enough time to learn. Combined

with the earlier ineffi ciency results, this implies a dramatic difference between the outcome-

improving and cost-saving cases when samples are large.

More specifically, in the outcome-improving case with any initial point, or in the cost-

saving case with a misaligned initial point, the population dynamic converges to the effi cient

point (0, 1) as K →∞ and t→∞. In the cost-saving case with an aligned initial point, the

population dynamic converges to the line L as K →∞ and t→∞.

Let ‖·‖ and d (·, ·) denote Euclidean norm and distance.

Theorem 2 Fix an initial point x̂ ∈ [0, 1]2, and assume that either (i) χ < π1 or (ii) χ > π1

and x̂ is misaligned. For every ε > 0, there exist K̄ > 0 and T > 0 such that, for every

K > K̄, every t > T , and every equilibrium path (X0, X1, k
∗, s) with (X0 (0) , X1 (0)) = x̂,

one has ‖(X0 (t) , X1 (t))− (0, 1)‖ < ε.

Conversely, fix an initial point x̂ ∈ [0, 1]2, and assume that χ > π1 and x̂ is aligned. For

every ε > 0, there exist K̄ > 0 and T > 0 such that, for every K > K̄, every t > T , and every

equilibrium path (X0, X1, k
∗, s) with (X0 (0) , X1 (0)) = x̂, one has d ((X0 (t) , X1 (t)) , L) < ε.

Theorem 2 gives an immediate corollary regarding steady states. In the outcome-improving

case, any sequence of steady states indexed by K converges to (0, 1) as K → ∞. In the

cost-saving case, any sequence of aligned steady states indexed by K converges to L, and

any sequence of misaligned steady states bounded away from L converges to (0, 1).18

Corollary 1 Assume χ < π1. For any sequence of equilibria
(
xK0 , x

K
1 , k

∗,K , sK
)
indexed by

K, limK→∞
(
xK0 , x

K
1

)
= (0, 1).

Assume χ > π1. For any sequence of aligned equilibria
(
xK0 , x

K
1 , k

∗,K , sK
)
indexed by

K, limK→∞ d
((
xK0 , x

K
1

)
, L
)

= 0. For any ε > 0 and any sequence of misaligned equilibria(
xK0 , x

K
1 , k

∗,K , sK
)
indexed byK such that d

((
xK0 , x

K
1

)
, L
)
> ε for allK, limK→∞

(
xK0 , x

K
1

)
=

(0, 1).

18Note that Theorem 2 allows for the possibility of a sequence of misaligned steady states converging to
L as K →∞.
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The intuition for Theorem 2 is that, away from the line L, players learn the state when

samples are large enough by the law of large numbers, so the population dynamic drifts

toward the effi cient point (0, 1). If the initial point is aligned in the outcome-improving case

or misaligned in the cost-saving case, it lies on the same side of L as (0, 1), so the population

dynamic converges to (0, 1). If the initial point is misaligned in the outcome-improving case,

the population dynamic drifts toward (0, 1) until it becomes close to L, and it then crosses

L and proceeds to converge to (0, 1). Finally, if the initial point is aligned in the cost-saving

case, the population dynamic drifts toward (0, 1) until it becomes close to L, but it cannot

cross L (as shown by Theorem 1). The population dynamic therefore remains close to L

forever.

The large-K population dynamic is illustrated in Figures 3 and 4. In these figures, the

population dynamic drifts toward (0, 1) in the areas outside the gray lines (i.e., far from L),

and the population dynamic drifts toward (1, 1) in the area between the dashed lines (i.e.,

close to L). In the areas between a gray line and a dashed line, the drift of the population

dynamic is ambiguous. As K →∞, both the gray lines and the dashed lines converge to L.

Figure 3: Phase diagram for the equilibrium population dynamic, cost-saving case (χ > π1),
large K.
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Figure 4: Phase diagram for the equilibrium population dynamic, outcome-improving case
with χ < π0, large K.

If one restricts attention to aligned initial points, the intuition for Theorem 2 becomes

even simpler. In the outcome-improving case, along any equilibrium path the success rate

in the good state is always substantially greater than the success rate in the bad state, so

players learn the state. In the cost-saving case, the success rates in the two states become

close as the population dynamic approaches L, so learning is confounded.

Theorem 2 yields the main conclusion of this paper: as K → ∞ and t → ∞, outcome-

improving innovations are adopted effi ciently, but cost-saving innovations are not. The key

economic intuition is that it is hard to learn about cost-saving innovations, because it is not

clear if observing good outcomes is good news or bad news.

The proof of Theorem 2 is deferred to Appendix A.

5 Small Samples

My most striking findings are the large-K results described above, but the model also yields

some interesting results when K is small. In particular, if one fixes K but considers the
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limits where π0 → 0 and/or π1 → 1, there are again clear differences between the outcome-

improving and cost-saving cases. This section briefly describes some notable differences

(focusing for simplicity on steady states), and also makes some observations about population

dynamics in the special case K = 1. See the working paper version (Wolitzky, 2017) for

further discussion and results.

5.1 One Observation: Under- vs. Over-Adoption

When K = 1, there is a unique steady state, which is aligned, and the steady state does

not tend toward effi ciency as π0 → 0 and/or π1 → 1.19 More interestingly, the nature

of the ineffi ciency is different in the pure outcome-improving innovation case (χ = 0) and

in all other cases (χ > 0). In the pure outcome-improving innovation case, in the unique

equilibrium the innovation is fully rejected in the bad state, but it is not fully adopted in

the good state. The innovation is thus under-adopted. Outside of this case, the innovation

is fully adopted in the good state but is not fully rejected in the bad state: that is, it is

over-adopted.

Proposition 3 Assume each player observes only one other player’s outcome (K = 1).

There is a unique equilibrium. Moreover,

1. In the pure outcome-improving innovation case, for all ε > 0 there exists δ > 0 such

that, if 1 > π1 > 1−δ, then in equilibrium x0 < ε and x1 <
p−p̂
p(1−p̂) +ε, where p̂ := c−π0

1−π0 .

The innovation is thus under-adopted.

2. Outside of the pure outcome-improving innovation case, for all ε > 0 there exists δ > 0

such that, if π1 > 1−δ, then in equilibrium x0 = χ
1−π0+χ

and x1 > 1−ε. The innovation

is thus over-adopted.

Proof. The proofs of this and all subsequent results in the paper are deferred to Appendix

B.

To illustrate Proposition 3 in the context of an example, consider an agricultural commu-

nity that relies on planting traditional maize, and compare the resulting adoption patterns

19For the proof, see Proposition 11 in Appendix B.
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when the community faces the introduction of a high-yield variety of maize and when it faces

the introduction of a completely new crop such as pineapple.20 In the high-yield maize case,

the bad outcome corresponds to a small maize harvest and the good outcome corresponds

to a large maize harvest; in the pineapple case, the bad outcome is maize but no pineapple,

while the good outcome is maize and pineapple. Suppose that in both cases the new crop is

almost certainly successful if the underlying soil conditions in the community are favorable.

The critical distinction between the cases where the new crop is high-yield maize and

where it is pineapple is that the status quo crop (traditional maize) might produce the good

outcome (a large maize harvest) in the former case, but can never produce the good outcome

(maize and pineapple) in the latter. Proposition 3 says that, if each farmer observes only

one neighbor’s harvest before planting her own crop, the pattern of technology adoption

will be completely different in the two cases. In the high-yield maize case, all farmers will

(profitably) adopt the new crop when the soil conditions are favorable, but some farmers

will (unprofitably) do the same even when the soil is unfavorable. In the pineapple case, no

farmers will mistakenly adopt the pineapple when the soil is unfavorable, but some farmers

will fail to adopt when the soil is favorable. High-yield maize is thus over-adopted, while

pineapple is under-adopted.

More generally, the key prediction of Proposition 3 is that qualitatively new technologies–

those that can produce results that cannot be confused with results coming from existing

technologies– are under-adopted, while new technologies that are only more likely to produce

good results are over-adopted.

5.2 Multiple Observations: Effi ciency vs. Persistent Ineffi ciency

The ineffi ciency in the K = 1 case documented in Proposition 3 vanishes for all K > 1 in the

pure outcome-improving case, while in the pure cost-saving case ineffi ciency diminishes only

slowly as K increases.21 Thus, as in the K →∞ case, equilibrium adoption is dramatically

20The example of maize and pineapple is inspired by the influential study of Conley and Udry (2010),
though not all aspects of their environment fit my model. Most importantly, they assume that farmers
observe their neighbors’planting decisions and fertilizer utilization in addition to their crop yields.
21Note that the conditions of Proposition 4 are more restrictive than those of Proposition 3, in that

Proposition 4 requires π0 → 0 and π1 → 1 while Proposition 3 requires only π1 → 1.
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more effi cient with an outcome-improving innovation.

Proposition 4 Assume K > 1.

1. In the pure outcome-improving innovation case, for all ε > 0 there exists δ > 0 such

that, if π0 < δ and π1 > 1−δ, then in any equilibrium x0 < ε and x1 > 1−ε. Adoption

is thus approximately effi cient.

2. In the pure cost-saving innovation case, for all ε > 0 there exists δ > 0 such that,

if π0 < δ and π1 > 1 − δ, then in any aligned equilibrium
∣∣∣x0 − (1− x0)K

∣∣∣ < ε and

x1 > 1− ε. Over-adoption thus persists for every finite K.

In contrast, for all ε > 0 there exist δ > 0 and K̄ > 0 such that, if π0 < δ, π1 > 1− δ,

and K > K̄, then in any aligned equilibrium x0 < ε and x1 > 1− ε. Adoption is thus

approximately effi cient when K is large.

There is of course no contradiction between the last part of Proposition 4 and Proposition

2: in the cost-saving case, for any values of π0 and π1 effi ciency in any aligned equilibrium

is uniformly bounded away from effi ciency for all K, but the degree of ineffi ciency vanishes

as π0 → 0 and π1 → 1. Thus, in the pure outcome-improving case, equilibrium is effi cient

in the K → ∞ limit as well as in the π0 → 0/π1 → 1 limit, while in the pure cost-saving

case equilibrium is effi cient only if both K is large and π0 is small/π1 is large.

In the pure outcome-improving case, the stark difference between the K = 1 and K > 1

cases may be explained by considering the equation for x1 that results when x0 = 0 and

players adopt if and only if they observe at least one success:

x1 = 1− (1− x1π1)K .

When K = 1, for any π1 < 1 the unique solution to this equation is x1 = 0. In contrast, for

any K > 1, when π1 is suffi ciently large this equation also admits a positive solution, and

this solution converges to 1 as π1 → 1. Thus, when K = 1, equilibrium requires players to

mix after observing failure (which imposes an upper bound on x1), while when K > 1 it is

possible for x1 to be close to 1 even in a pure strategy equilibrium.
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In the pure cost-saving case, when π0 = 0 the adoption rate in the bad state satisfies

the equation x0 = (1− x0)K . The solution to this equation converges to 0 rather slowly as

K → ∞. For example, if K = 5 then x ≈ 0.25, and if K = 50 then x ≈ 0.06. Ineffi ciency

is therefore substantially greater in the pure cost-saving case than in the pure outcome-

improving case, even when K is relatively large.

A final observation concerns the comparative statics of expected welfare with respect to

K. While Proposition 4 illustrates settings where larger samples lead to higher equilibrium

welfare (as one would expect), this comparative static does not hold in general. Indeed,

Example 2 in Appendix B shows that welfare does not always unambiguously increase when

players observe larger samples even if one restricts attention to stable aligned equilibria.

5.3 Convergence to Equilibrium in the K = 1 Case

A question left unanswered by the analysis so far is whether the equilibrium population

dynamic always converges to a steady state. The existence of multiple stable aligned steady

states– as illustrated in Example 2 in Appendix B– suggests that this may be a diffi cult

question to resolve, and I have not been able to provide a complete answer. However,

convergence to the unique steady state does always occur in the K = 1 case. Interestingly,

this convergence may not be monotonic.

The convergence result for the K = 1 case is as follows.

Proposition 5 When K = 1, the unique equilibrium (x∗0, x
∗
1) is globally attracting: for any

equilibrium path (X0, X1, k
∗, s), limt→∞ (X0 (t) , X1 (t)) = (x∗0, x

∗
1).

A simple example illustrates that convergence can be non-monotone.

Proposition 6 When K = 1, χ = 0, and π0 = 0, there is a unique equilibrium path starting

from initial condition (X0 (0) , X1 (0)) = (1, 1), and the population dynamics are as follows:

1. X1 (t) decreases at rate 1 − π1 until reaching its steady-state value x∗1 at some finite

time T , and then remains constant forever.
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2. X0 (t) decreases at rate 1 up to time T , and then converges monotonically to its steady-

state value x∗0. The overall path X0 (t) is thus non-monotone if and only if X0 (T ) < x∗0.

Finally, there exists δ > 0 such that if π1 > 1− δ then X0 (T ) < x∗0.

Figure 5 illustrates the equilibrium path in the case where X0 (T ) < x∗0. The intuition

for why the path is non-monotone is as follows: First, X1 (t) must decrease over time until

reaching its steady-state value x∗1, as if X1 (t) > x∗1 then observing failure is so informative

that a player who observes failure will never adopt the innovation. Once X1 (t) reaches

x∗1, observing failure becomes just informative enough that a player who observes failure is

indifferent between the innovation and the status quo. At this point, players who observe

failure mix, adopting the innovation with the probability that keeps the adoption rate in the

good state constant.22 Finally, if the adoption rate in the bad state is suffi ciently low by

the time X1 (t) reaches x∗1 (i.e., if X0 (T ) < x∗0), then this mixing probability is high enough

that the adoption rate in the bad state starts to increase, before eventually approaching its

steady-state level.

Figure 5: Population dynamics with K = 1, χ = 0, π0 = 0, initial condition
(X0 (0) , X1 (0)) = (1, 1), and X0 (T ) < x∗0.

22Thus, the kink in the population dynamic at time T corresponds to a jump in k∗ from 0 to 1.
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In addition to featuring non-monotone population dynamics, this example also has the in-

teresting property that the improvement principle of Banerjee and Fudenberg does not hold.

The improvement principle states that average welfare in the population is non-decreasing

over time. The improvement principle always holds with action-based learning, as new

players can guarantee themselves the average level of welfare by simply copying a random

action. This argument does not apply with outcome-based learning, and indeed the im-

provement principle fails in the setting of Proposition 6 whenever the population dynamic

is non-monotone: this follows because, after time T , average welfare in state 1 is constant

while average welfare in state 0 is strictly decreasing.

6 Extensions

This section extends the model in two directions. Section 6.1 considers more general physical

environments, which allow for heterogeneous players and multiple states of the world. Section

6.2 considers more general information structures, which allow for additional signals of the

state (or other variables measurable with respect to the state, such as the adoption rate) and

uncertainty regarding calendar time. The emphasis in all cases is on assessing the robustness

of the main results, Theorems 1 and 2. The working paper version (Wolitzky, 2017) contains

additional extensions.

6.1 More General Physical Environments

6.1.1 Heterogeneous Players

The baseline model assumes all players are identical. It would be more realistic to assume

that players differ in exogenous characteristics that affect their attitude toward the innova-

tion. For example, farmers have information about features of their own soil, and it may be

known that, if a new crop variety is effective, it will be particularly effective for certain types

of soil. Whether enriching the model on this dimension affects the main results turns out to

hinge on whether players’characteristics are observable– for example, if a farmer knows the

soil characteristics of the neighbors whose harvests she observes. In particular, unobservable
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heterogeneity does not affect the results, while observable heterogeneity generically leads to

effi cient adoption even in the cost-saving case.

Formally, suppose there are |Q| types of players. Each player knows her own type. The

constant population share of type q players is αq. A player’s type affects her probability

of success when using the innovation: a type q player who uses the innovation in state θ

succeeds with probability πθ,q. Assume that (1) and (2) are satisfied for each type q.23

Suppose first that each player continues to observe a random sample of K other players’

outcomes, without observing their types. The population dynamic must now keep track of

adoption rates for each type of player. Thus, (i) An equilibrium path consists of a list of

functions

(
X0,q : R+ → [0, 1] , X1,q : R+ → [0, 1] , k∗q : R+ → {0, . . . , K} , sq : R+ → [0, 1]

)
q∈Q .

(ii) A vector of adoption rates (x0,q, x1,q)q∈Q is aligned if and only if

∑
q∈Q

αqx1,q (π1,q − χ) ≥
∑
q∈Q

αqx0,q (π0,q − χ) . (12)

(iii) The probability that a new player observes k successes when the state is θ and the

adoption rate among type-q players is xθ,q equals

φ̂θ

(
k; (xq)q∈Q

)
=

 K

k

[χ+
∑
q∈Q

αqxθ,q (πθ,q − χ)

]k [
1− χ−

∑
q∈Q

αqxθ,q (πθ,q − χ)

]K−k
.

(iv) The population trajectory is given by

Ẋθ,q (t) =



φ̂θ

(
k∗q (t) ; (Xθ,q (t))q∈Q

)
sq (t) +

∑K
k=k∗q (t)+1 φ̂θ

(
k; (Xθ,q (t))q∈Q

)
−Xθ,q (t)

if (12) holds at (X0,q (t) , X1,q (t))q∈Q ;

φ̂θ

(
k∗q (t) ; (Xθ,q (t))q∈Q

)
sq (t) +

∑k∗q (t)−1

k=0 φ̂θ

(
k; (Xθ,q (t))q∈Q

)
−Xθ,q (t)

if (12) fails at (X0,q (t) , X1,q (t))q∈Q

.

23One can also allow types with π0,q > π1,q, in which case the inequalities in (2) must be reversed for
these types.
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Although the vector of adoption rates now lies in R2|Q|, Theorems 1 and 2 generalize

immediately. For Theorem 1, the argument remains that, whenever (x0,q, x1,q)q∈Q is close

to the boundary of the set of aligned points (now defined by the hyperplane with equation∑
q∈Q αqx1,q (π1,q − χ)−

∑
q∈Q αqx0,q (π0,q − χ) = 0), p

(
k; (x0,q, x1,q)q∈Q

)
is close to p for all

k ∈ {0, . . . , K}. Thus, so long as (1) is satisfied for each type q, the population dynamic

drifts toward the aligned point (x0,q = 1, x1,q = 1)q∈Q whenever it is close enough to the

boundary of the aligned set. The dynamic can therefore never exit the aligned set.

However, matters are quite different when each player instead observes a random sample

ofK other players’outcomes and types. In this case, as long as the ratio (π1,q − χ) / (π0,q − χ)

is not the same for all types q, when K is suffi ciently large the equilibrium path with initial

point (x0,q = 1, x1,q = 1)q∈Q converges to the effi cient point (x0,q = 0, x1,q = 1)q∈Q in both

the outcome-improving and cost-saving cases. The intuition is that, when x1,q (π1,q − χ)

hits x0,q (π0,q − χ) for some type q, new players can still infer the state with high proba-

bility solely on the basis of the outcomes of players with types other than q. So long as

(π1,q − χ) / (π0,q − χ) is not the same for all q, the outcomes of players of some type will

always be informative of the state at each point on the line connecting the initial point

(x0,q = 1, x1,q = 1)q∈Q to the effi cient point (x0,q = 0, x1,q = 1)q∈Q.

6.1.2 Multiple States

The issue of whether and how the main results extend with more than two states of the

world is somewhat subtle. I therefore provide a more detailed analysis for this case. I find

that, (i) unlike in the two-state case, effi cient adoption of a cost-saving innovation starting

from an aligned point is sometimes possible with multiple states, but (ii) for a large set

of parameters, this does not occur, and (iii) effi cient adoption of a cost-saving innovation

necessarily involves “complex”Bayesian updating, where the information content of a sample

is not monotonic in the number of observed successes.

To start with an example, consider the cost-saving case, and suppose there is a third,

“very good”state, θ = 2, with π0 < π1 < π2 < χ. Denote the prior probability of state θ by

pθ, and continue to assume that the risky action is optimal under the prior: p0π0 + p1π1 +

p2π2 − c > χ.
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Can there exist an equilibrium path leading from the initial point (x0, x1, x2) = (1, 1, 1)

to the effi cient point (0, 1, 1)? The answer depends on whether the risky action is optimal

under the prior, conditional on the state lying in the set {0, 1} or {0, 2}: that is, on whether
p0

p0+p1
π0+ p1

p0+p1
π1−c and p0

p0+p2
π0+ p2

p0+p2
π2−c are greater or less than χ. To see why, note that

any equilibrium path leading from (1, 1, 1) to (0, 1, 1) must pass through a point (x0, x1, x2)

with x0 (π0 − χ) = x1 (π1 − χ) and a point (x′0, x
′
1, x
′
2) with x′0 (π0 − χ) = x′2 (π2 − χ). In

the first case (say), after every sample the ratio of probability weights assigned to states

0 and 1 under the posterior will be the same as the ratio under the prior. So if the risky

action is optimal under the prior (conditional on the state lying in {0, 1}), then the risky

action will be optimal after observing any sample at the point (x0, x1, x2), which implies that

the equilibrium path can never reach a point with x0 (π0 − χ) > x1 (π1 − χ). On the other

hand, if χ > max
{

p0
p0+p1

π0 + p1
p0+p1

π1,
p0

p0+p2
π0 + p2

p0+p2
π2

}
− c, then an equilibrium path from

(1, 1, 1) to (0, 1, 1) may exist for suffi ciently large K.

To address this possibility, I present two results that provide conditions guaranteeing

that the main results from the two-state model generalize to the case of multiple states.

Suppose there are n + 1 states, Θ = {0, . . . , n}, with corresponding conditional success

probabilities π0 < . . . < πn and prior probabilities (p0, . . . , pn). Assume π0− c < χ < πn− c

and let θ∗ ∈ {0, . . . , n− 1} satisfy πθ∗ − c < χ < πθ∗+1 − c, so that θ∗ is the best

state at which the status quo remains optimal. Call states θ > θ∗ innovation-optimal,

and call states θ ≤ θ∗ status quo-optimal. Say that an asymptotically effi cient path ex-

ists if there exists a sequence of equilibrium paths
(
XK

0 , . . . , X
K
n

)
indexed by K such that(

XK
0 (0) , . . . , XK

n (0)
)

= (1, . . . , 1) and

lim
K→∞

lim
t→∞

(
XK

0 (t) , . . . , XK
n (t)

)
=

 0, . . . 0︸ ︷︷ ︸
θ∗+1 times

, 1, . . . 1︸ ︷︷ ︸
n−θ∗ times

 .

Theorems 1 and 2 imply that, in the two-state case (n = 1), an asymptotically effi cient path

fails to exists when χ > π1 and action 1 is optimal under the prior. The following proposition

generalizes this result.

Proposition 7 Let a =
∑θ∗

θ=0 pθ be the prior probability that the status quo is optimal.
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Suppose there exists a set of innovation-optimal states Θ∗ ⊆ {θ∗ + 1, . . . , n} with
∑

θ∈Θ∗ pθ =

b such that (i) χ > πmax Θ∗ and (ii) the innovation is optimal when θ = 0 with probability

a/ (a+ b) and θ = min Θ∗ with probability b/ (a+ b):

a

a+ b
π0 +

b

a+ b
πmin Θ∗ − c > χ. (13)

Then there does not exist an asymptotically effi cient path.

For example, suppose that (i) there is only one status quo-optimal state, state 0, and

(ii) there is an innovation-optimal state θ̂ with χ > πθ̂ such that the innovation is optimal

conditional on the event θ ∈
{

0, θ̂
}
. Then Proposition 7 implies that an asymptotically

effi cient path does not exist.

It seems diffi cult to substantially weaken the suffi cient condition for the non-existence

of an asymptotically effi cient path in Proposition 7. However, note that the above example

of an asymptotically effi cient path with n = 2 has the property that, at some points in

time, the success rate is non-monotone in the state. Equilibrium paths with this feature

are arguably implausible, because the inferences players must draw based on their samples

are quite complex: for instance, in the example there are times where players take the risky

action if they observe a small or large number of successes and take the safe action if they

observe an intermediate number of successes.24 To capture this idea, I say that an equilibrium

path is simple if at each point in time observing success is always unambiguously good news

or bad news: for each t, Xθ (t) (πθ − χ) is either increasing or decreasing in θ.25

Proposition 8 If χ > πθ for some innovation-optimal state θ, then there does not exist a

simple asymptotically effi cient path.

With only two states, every equilibrium path is simple. Hence, when there are only two

states, Proposition 8 says precisely that there is no asymptotically effi cient path in the cost-

saving innovation case. Intuitively, with two states, observing success cannot switch from

24In particular, this is how players behave at times where the success rate in state 0 has already crossed
the succes rate in state 1, but has not yet crossed the success rate in state 2.
25Note that the success rate is increasing (resp., decreasing) in θ if and only if observing more (resp.,

fewer) successes is better news in the monotone likelihood ratio sense.
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being good news to being bad news without passing through a point where it is completely

uninformative. However, with more than two states, success can potentially switch from

being good news to being bad news by passing through a region where it is “mixed news,”

in that it shifts the likelihood ratio of pairs of states in a non-monotone manner. As the

requirement of simplicity rules out this mixed news case, results from the two-state case

generalize under this restriction.

6.2 More General Information Structures

6.2.1 Additional Signals of the State

Theorems 1 and 2 are robust to letting players observe additional exogenous signals of the

state, so long as these signals are not so informative that the adoption rates that would

result from exogenous information alone are misaligned. For example, such signals could

result from unmodeled experimentation on the part of each player prior to making her

decision. The same results apply a fortiori if players observe signals of other variables that

are measurable with respect to the state, such as the aggregate adoption rate or aggregate

social welfare.

Formally, suppose that, before a player acts, she observes an additional real-valued signal

ω ∈ R that may depend on both the state θ and the player’s observed sample of K outcomes,

which I denote by ψ. (Thus, ψ ∈ {0, 1}K .) Assume ω has an atomless distribution with

continuous density fθ (ω|ψ), independent across players. In addition, fixing a sample ψ,

assume without loss of generality that f1 (ω|ψ) /f0 (ω|ψ) is increasing in ω, so higher signals

are better news about the state. Define a critical signal ω∗ (ψ) by

f0 (ω∗ (ψ) |ψ)

f1 (ω∗ (ψ) |ψ)
=

p

1− p
1− p∗
p∗

,

or, if no such signal exists, ω∗ (ψ) = −∞. With the above ordering on ω, let Fθ (ω|ψ) =∫
ω′<ω fθ (ω′|ψ) dω′. The required assumption on the informativeness of ω is as follows:

Assumption 1 For every sample ψ, the point (1− F0 (ω∗ (ψ) |ψ) , 1− F1 (ω∗ (ψ) |ψ)) is aligned.

Note that F0 (ω∗ (ψ) |ψ) ≥ F1 (ω∗ (ψ) |ψ). Therefore, Assumption 1 is non-trivial only in
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the cost-saving case (χ > π1), in which case it is equivalent to the inequality

1− F1 (ω∗ (ψ) |ψ)

1− F0 (ω∗ (ψ) |ψ)
≤ χ− π0

χ− π1

.

When the signal is completely uninformative, F0 (ω∗ (ψ) |ψ) = F1 (ω∗ (ψ) |ψ) = 0, so this

inequality holds. Assumption 1 therefore says that the signal cannot be too informative.

It is straightforward to check that the main results hold under Assumption 1. In partic-

ular, the assumption implies that, if the population dynamic is close to L (so other players’

outcomes are uninformative), then the exogenous signals drive the population dynamic to-

ward the aligned point (1− F0 (ω∗ (ψ) |ψ) , 1− F1 (ω∗ (ψ) |ψ)). The proof of Theorem 1 is

thus easily adapted to show that the population dynamic can never exit the aligned region

A. The proof of Theorem 2 also remains valid with trivial modifications.

The results are also robust to introducing “noise players,”who use the innovation with

some exogenously given probability, not necessarily independent of the state. As long as the

shares of noise players using the innovation in the two states constitute an aligned point,

equilibrium paths cannot exit the aligned region A. For example, if the noise players do use

the innovation with the same probability in both states (so the point corresponding to their

behavior lies on the 45◦ line in (x0, x1)-space) then this result applies for any proportion

of noise players in the population. Note also that players who are simply unaware of the

innovation– and thus always use the status quo– are a special case of such noise players.

6.2.2 Unknown Calendar Time

The analysis so far assumes that, when a player enters the game, she knows the adoption

rate of the innovation conditional on the state. For the definition of a steady state, this

assumption is innocuous. However, as adoption rates change over time along a dynamic

equilibrium path, the definition of an equilibrium path implicitly assumes that a player knows

the time at which she enters the game. There are several ways of relaxing this assumption,

but a particularly simple and natural one is to assume that players always draw inferences

as if their samples were drawn from a fixed steady state distribution. An interpretation is

that players have an improper uniform prior over the time at which they enter the game and
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expect a steady state to eventually be reached.

Definition 3 Fix a steady state (x∗0, x
∗
1, k
∗, s∗). An unknown calendar time path relative to

(x∗0, x
∗
1, k
∗, s∗) is a pair of differentiable functions (X0 : R+ → [0, 1] , X1 : R+ → [0, 1]) such

that, for θ = 0, 1,

Ẋθ (t) =



φθ (k∗;Xθ (t)) s∗ +
∑K

k=k∗+1 φθ (k;Xθ (t))−Xθ (t)

if (4) holds at (x∗0, x
∗
1) ;

φθ (k∗;Xθ (t)) s∗ +
∑k∗−1

k=0 φθ (k;Xθ (t))−Xθ (t)

if (4) fails at (x∗0, x
∗
1)

.

My results are mostly robust to considering this alternative equilibrium concept. In

particular, an unknown calendar time path relative to an misaligned equilibrium can never

converge to that equilibrium from an aligned initial point. The intuition is that the success

rate at the initial point is higher in the good state, and if players use the steady-state

inference rule to mistakenly conclude that success is bad news about the state, they switch

to the safe action at a higher rate in the good state, which further improves the success rate

in the good state.

Proposition 9 If (x∗0, x
∗
1, k
∗, s∗) is an misaligned equilibrium, (X0, X1) is an unknown calen-

dar time path relative to (x∗0, x
∗
1, k
∗, s∗), and (X0 (0) , X1 (0)) is aligned, then (X0 (t) , X1 (t))

is aligned for all t ∈ R+. In particular, (X0 (t) , X1 (t)) is bounded away from (x∗0, x
∗
1) for all

t ∈ R+.

Conversely, a large class of aligned steady states can be reached by an unknown calendar

time path starting from a range of aligned initial points, including the point (x0, x1) =

(1, 1) that results from optimal choice under the prior. Say that an aligned steady state

(x∗0, x
∗
1, k
∗, s∗) is stable from above if, for θ = 0, 1, φθ (k∗;xθ) s

∗ +
∑K

k=k∗+1 φθ (k;xθ) < xθ for

all xθ > x∗θ. When K = 1, the unique equilibrium is stable from above; in Example 2 in

Appendix B, the larger stable aligned equilibrium is stable from above.

Proposition 10 If (x∗0, x
∗
1, k
∗, s∗) is an aligned equilibrium that is stable from above, (X0, X1)

is an unknown calendar time path relative to (x∗0, x
∗
1, k
∗, s∗), and (X0 (0) , X1 (0)) is aligned

and satisfies Xθ (0) ≥ x∗θ for θ = 0, 1, then limt→∞ (X0 (t) , X1 (t)) = (x∗0, x
∗
1).
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7 Conclusion

This paper has developed a simple model of social learning where learning is outcome-based :

players observe each other’s outcomes, but not their actions. Since outcomes are noisy,

the resulting picture of social learning features both ineffi ciency and persistent diversity

of actions. I have focused on the question of how the nature and extent of ineffi ciency

depend on features of the innovation about which the group must learn. The most striking

finding is that, while outcome-improving innovations are adopted effi ciently when players’

samples are large and the population has had enough time to learn, the adoption of cost-

saving innovations entails substantial ineffi ciency whenever the initial generation of players

is not already well-informed. While I have not modeled the production of innovations, this

difference in adoption patterns can be expected to bias the innovation process against cost-

saving innovations, which is consistent with the observed lack of cost-saving innovations in

many fields.

Let me conclude by pointing out two implications of the model, one positive and one

normative.

First, while the model is admittedly simple and stylized, it does make some clear empirical

predictions that would be interesting to test. The key prediction is that the correlation

between an environment’s underlying suitability to an innovation and the realized adoption

rate will be greater for outcome-improving innovations than for cost-saving innovations.

For example, in the agricultural context, the prediction is that the correlation between

soil suitability and adoption will be greater for outcome-improving innovations (like high-

yield crop varieties) than for cost-saving innovations (like labor-saving varieties, such as the

genetically engineered soybeans studied by Bustos, Caprettini, and Ponticelli (2016)). While

I am not aware of existing data that could directly be brought to bear here, this seems like

an interesting direction for empirical research.

Second, consider the situation of a benevolent outsider, like an NGO or a professional

organization, that wants to design an intervention to improve the effi ciency of technology

adoption. In the problematic cost-saving case, publicly releasing information (such as test

results) about the technology’s effectiveness may not help: the public release of information
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at the beginning of the game serves only to change the prior p, and the result that the long-

run adoption of cost-saving innovations is ineffi cient is largely independent of the prior. But

other interventions could be more effective. For instance, gathering and releasing data on

the adoption rate of the innovation is a promising way to restore effi ciency: even when long-

run adoption is ineffi cient, the adoption rate will still differ depending on the innovation’s

effectiveness, so revealing the adoption rate will reveal the state. Another promising approach

is providing an information technology that lets each individual conduct her own test of the

innovation before deciding whether to adopt it. If these tests are suffi ciently informative,

the initial adoption rates will be misaligned (i.e., Assumption 1 will be violated), and social

learning can then lead the adoption rates to converge to effi ciency.
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8 Appendix A: Proof of Theorem 2

The proof relies on four lemmas. Lemma 1 derives the asymptotic (K →∞) formula for the

cutoff fraction of observed successes above or below which new players adopt, and shows that

convergence to this limit is of order 1/K. Lemma 2 uses this to show that the adoption rate

among new players converges to effi ciency as K →∞, uniformly over points x bounded away

from L. This is the key step in the proof. Lemmas 3 and 4 then establish some additional

properties of equilibrium paths that are useful in the outcome-improving case when the

initial point is misaligned– this case raises some new issues, as now the equilibrium path

must cross the line L to reach the effi cient point.

Throughout the proof, given a point x = (x0, x1) ∈ [0, 1]2, I write σ0 (x) = σ0 (x0) and

σ1 (x) = σ1 (x1). I also sometimes reduce notation by writing x and ẋ for X (t) and Ẋ (t),

including the time argument only when necessary.

Lemma 1 For everyK , every equilibrium path (X0, X1, k
∗, s), and every time t with X (t) =

x aligned and (σ0 (x) , σ1 (x)) ∈ (0, 1)2,

k∗ (t)

K
∈
[
σ∗ (x)− 1

K
ζ (x) , σ∗ (x)− 1

K
ζ (x) +

1

K

]
,

where

σ∗ (x) =
log 1−σ0(x)

1−σ1(x)

log
(

1−σ0(x)
σ0(x)

σ1(x)
1−σ1(x)

) ∈ (σ0 (x) , σ1 (x))

and

ζ (x) =
log
(

p
1−p

1−p∗
p∗

)
log
(

1−σ0(x)
σ0(x)

σ1(x)
1−σ1(x)

) .
Similarly, for every K , every equilibrium path (X0, X1, k

∗, s), and every time t with

X (t) = x misaligned and (σ0 (x) , σ1 (x)) ∈ (0, 1)2,

k∗ (t)

K
∈
[
σ∗ (x)− 1

K
ζ (x)− 1

K
, σ∗ (x)− 1

K
ζ (x)

]
,

where now σ∗ (x) ∈ (σ1 (x) , σ0 (x)).

Proof. Consider the aligned case. (The misaligned case is symmetric.) By the definition of
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an equilibrium path, p (k∗ (t)− 1;x0, x1) ≤ p∗ ≤ p (k∗ (t) ;x0, x1). Hence, by Bayes’rule,

σ0 (x)k
∗(t)−1 (1− σ0 (x))K−k

∗(t)+1

σ1 (x)k
∗(t)−1 (1− σ1 (x))K−k

∗(t)+1
≥ p

1− p
1− p∗
p∗

≥ σ0 (x)k
∗(t) (1− σ0 (x))K−k

∗(t)

σ1 (x)k
∗(t) (1− σ1 (x))K−k

∗(t)
.

Letting σ∗K = k∗(t)
K
, rewrite this as

[
σ0 (x)σ

∗
K−

1
K (1− σ0 (x))1−σ∗K+ 1

K

σ1 (x)σ
∗
K−

1
K (1− σ1 (x))1−σ∗K+ 1

K

]K
≥ p

1− p
1− p∗
p∗

≥
[
σ0 (x)σ

∗
K (1− σ0 (x))1−σ∗K

σ1 (x)σ
∗
K (1− σ1 (x))1−σ∗K

]K
.

Taking logs and grouping terms yields

K

(
σ∗K −

1

K

)
log

(
σ0 (x)

1− σ0 (x)

1− σ1 (x)

σ1 (x)

)
≥ log

(
p

1− p
1− p∗
p∗

)
+K log

1− σ1 (x)

1− σ0 (x)

≥ Kσ∗K log

(
σ0 (x)

1− σ0 (x)

1− σ1 (x)

σ1 (x)

)
.

Dividing by K log
(

σ0(x)
1−σ0(x)

1−σ1(x)
σ1(x)

)
(a negative number) yields the desired result.

Lemma 2 For every ε, η > 0, there exists K̄ > 0 such that, for every K > K̄, every

equilibrium path (X0, X1, k
∗, s), and every time t such that d (X (t) , L) > η,

∥∥∥Ẋ (t) +X (t)− (0, 1)
∥∥∥ < ε.

Proof. Note that d (x, L) > η implies |σ0 (x)− σ1 (x)| > ‖(χ− π0, χ− π1)‖ η. I prove the

lemma for (σ0 (x) , σ1 (x)) ∈ (0, 1)2. The argument for the case where at least one success

rate lies in {0, 1} is similar but simpler.

By Lemma 1, for every K, every equilibrium path, and every t with X (t) = x aligned

and (σ0 (x) , σ1 (x)) ∈ (0, 1)2, one has

ẋθ + xθ ≤ Pr (k ≥ k∗ (t) |θ)

= Pr

(
k

K
≥ k∗ (t)

K
|θ
)

≤ Pr

(
σ ≥ σ∗ (x)− 1

K
ζ (x) |θ

)
,
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where σ := k
K
. Note that

Pr

(
σ ≥ σ∗ (x)− 1

K
ζ (x) |θ = 0

)
= Pr

(
σ − σ0 (x) ≥ σ∗ (x)− 1

K
ζ (x)− σ0 (x) |θ = 0

)
≤ Var (σ|θ = 0)(

σ∗ (x)− 1
K
ζ (x)− σ0 (x)

)2

=
σ0 (x) (1− σ0 (x))

K
(
σ∗ (x)− 1

K
ζ (x)− σ0 (x)

)2 ,

where the second line uses Chebyshev’s inequality and the third follows because outcomes

are conditionally independent Bernoulli trials. Let (L+Bη)
c :=

{
x ∈ [0, 1]2 : d (x, L) > η

}
.

Let

C
(
η, K̄

)
= sup

x∈(L+Bη)c,K>K̄

σ0 (x) (1− σ0 (x))(
σ∗ (x)− 1

K
ζ (x)− σ0 (x)

)2 .

Thus, Pr
(
σ ≥ σ∗ (x)− 1

K
ζ (x) |θ = 0

)
≤ C

(
η, K̄

)
/K for all x ∈ (L+Bη)

c and K > K̄.

I claim that, for all η > 0, there exists K̄ such that C
(
η, K̄

)
< ∞. To see this, recall

the formulas for σ∗ and ζ, and note that σ∗ in increasing in σ1 and ζ is decreasing in σ1

(suppressing the dependence of the σ variables and ζ on x). Hence,

sup
x∈(L+Bη)c

σ0 (x) (1− σ0 (x))(
σ∗ (x)− 1

K
ζ (x)− σ0 (x)

)2

is upper-bounded by taking σ1 = σ0+‖(χ− π0, χ− π1)‖ η (recalling the restriction to aligned

points, where σ1 ≥ σ0). Let η̂ = ‖(χ− π0, χ− π1)‖ η. After substituting out for σ∗, ζ, and

σ1, and again suppressing the dependence on x, the resulting upper bound equals

sup
σ0∈(0,1−η̂)

σ0 (1− σ0)(
log

1−σ0
1−σ0−η̂

log
(
1−σ0
σ0

σ0+η̂
1−σ0−η̂

) − 1
K

log( p
1−p

1−p∗
p∗ )

log
(
1−σ0
σ0

σ0+η̂
1−σ0−η̂

) − σ0

)2 .

When K =∞, some simple calculus shows that this expression attains its maximum in the

open interval (0, 1− η̂). Therefore, there exists K̄ suffi ciently large such that

max
σ0∈(0,1−η̂)

σ0 (1− σ0)(
log

1−σ0
1−σ0−η̂

log
(
1−σ0
σ0

σ0+η̂
1−σ0−η̂

) − 1
K

log( p
1−p

1−p∗
p∗ )

log
(
1−σ0
σ0

σ0+η̂
1−σ0−η̂

) − σ0

)2
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exists for all K > K̄. As the maximand of this expression is decreasing in K for each σ0,

this implies C
(
η, K̄

)
<∞.

I have shown that, for all η > 0, there exist K̄ and a finite number C
(
η, K̄

)
such that

Pr
(
σ ≥ σ∗ (x)− 1

K
ζ (x) |θ = 0

)
≤ C

(
η, K̄

)
/K for all x ∈ (L+Bη)

c and K > K̄. Hence, for

all ε, η > 0, there exists K̄ such that Pr
(
σ ≥ σ∗ (x)− 1

K
ζ (x) |θ = 0

)
< ε for all x ∈ (L+Bη)

c

and K > K̄. Therefore, ẋ0 + x0 < ε whenever x ∈ (L+Bη)
c and K > K̄. A symmetric

argument implies that ẋ1 +x1 → 1 uniformly over x ∈ (L+Bη)
c. This yields the conclusion

of the lemma in the case where x is aligned. The misaligned case is symmetric.

Lemma 3 For every K, every t, and every equilibrium path (X0, X1, k
∗, s),

Ẋ1 (t) +X1 (t) ≥ max

{
Ẋ0 (t) +X0 (t) ,

p− p∗
1− p∗

}
.26

Proof. At an aligned point x, φ0 (k;x0) /φ1 (k;x1) is decreasing in k, and therefore (as

likelihood ratio dominance implies first-order stochastic dominance)

K∑
k=k0

φ0 (k;x0) ≤
K∑

k=k0

φ1 (k;x1) for all k0 ∈ {0, . . . , K} .

In particular, this inequality holds for k0 = k∗ and k0 = k∗ + 1. Hence,

ẋ0 + x0 = φ0 (k∗;x0) s+
K∑

k=k∗+1

φ0 (k;x0) ≤ φ1 (k∗;x1) s+
K∑

k=k∗+1

φ1 (k;x1) = ẋ1 + x1.

Symmetrically, at an misaligned point, φ0 (k;x0) /φ1 (k;x1) is increasing in k and new

players adopt if k < k∗, so again ẋ0 + x0 ≤ ẋ1 + x1.

The second part of the proposition follows because the Bayesian information structure

that minimizes the probability that a player’s posterior is strictly above p∗ conditional on

θ = 1 sends her posterior to p∗ and 1 with probabilities 1−p
1−p∗ and

p−p∗
1−p∗ , respectively.

26This implies that, at every steady state, x1 ≥ max
{
x0,

p−p∗
1−p∗

}
. The latter fact is not used in the proof

of Theorem 2, but it is used in some of the proofs in Appendix B.
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Lemma 4 There exist K̄ > 0 and T > 0 such that, for every K > K̄, every t > T , and

every equilibrium path (X0, X1, k
∗, s),

X1 (t) ≥ max

{
X0 (t) ,

1

2

p− p∗
1− p∗

}
.

Proof. Recall that ẋ1+x1 ≥ p−p∗
1−p∗ , by Lemma 3. In particular, if x1 ≤ 1

2
p−p∗
1−p∗ then ẋ1 ≥ 1

2
p−p∗
1−p∗ .

Hence, x1 (t) ≥ 1
2
p−p∗
1−p∗ for all t ≥ 1.

Next, note that the region
{
x ∈ [0, 1]2 : x1 ≥ x0

}
is forward invariant. This follows be-

cause, by Lemma 3, ẋ1 + x1 ≥ ẋ0 + x0, so x1 = x0 implies ẋ1 ≥ ẋ0.

It remains to show that x0 can exceed x1 for only a finite length of time T . This is proved

by deriving a lower bound on ẋ1 − ẋ0 that applies whenever x0 > x1.

First, for all η > 0, there exists K̄ such that, if K > K̄, x0 > x1, and d (x, L) ≥ η, then

ẋ1 − ẋ0 >
1
2
. To see this, note that taking ε = 1

2
in Lemma 2 implies ẋ1 + x1 > ẋ0 + x0 + 1

2
.

When x0 > x1, this gives ẋ1 − ẋ0 >
1
2
.

Second, for all η > 0, if x0 > x1, d (x, L) ≤ η, and π0 > χ, then ẋ1 − ẋ0 ≥ π1−π0
π0−χ x1 −

‖(π0−χ,π1−χ)‖
π0−χ η. To see this, note that

d (x, L) =
|(π1 − χ)x1 − (π0 − χ)x0|
‖(π0 − χ, π1 − χ)‖ =

|(π1 − π0)x1 − (π0 − χ) (x0 − x1)|
‖(π0 − χ, π1 − χ)‖ ,

so d (x, L) ≤ η and π0 > χ imply x0 − x1 ≥ π1−π0
π0−χ x1 − ‖(π0−χ,π1−χ)‖

π0−χ η. Finally, Lemma 3

implies ẋ1 − ẋ0 ≥ x0 − x1.

One can now derive a formula for T . If χ ≥ π1, then x0 > x1 implies d (x, L) ≥
π1−π0

‖(π0−χ,π1−χ)‖x1, so x1 (t) ≥ 1
2
p−p∗
1−p∗ for all t ≥ 1 implies d (x (t) , L) ≥ 1

2
p−p∗
1−p∗

π1−π0
‖(π0−χ,π1−χ)‖ for all

t ≥ 1. If π1 > χ ≥ π0, then d (x, L) ≥ π1−χ
‖(π0−χ,π1−χ)‖x1, so x1 (t) ≥ 1

2
p−p∗
1−p∗ for all t ≥ 1 implies

d (x (t) , L) ≥ 1
2
p−p∗
1−p∗

π1−χ
‖(π0−χ,π1−χ)‖ for all t ≥ 1. In either case, there exists K̄ such that, if

K > K̄, x0 (t) > x1 (t), and t ≥ 1, then ẋ1 (t)− ẋ0 (t) > 1
2
. Hence, x1 (t)− x0 (t) must reach

0 in time at most 1 + 1/
(

1
2

)
= 3.

If instead χ < π0, let η = 1
4
p−p∗
1−p∗

π1−π0
‖(π0−χ,π1−χ)‖ . Then x1 (t) ≥ 1

2
p−p∗
1−p∗ implies

π1−π0
π0−χ x1 (t) −

‖(π0−χ,π1−χ)‖
π0−χ η ≥ 1

4
p−p∗
1−p∗

π1−π0
π0−χ , so ẋ1 (t) − ẋ0 (t) ≥ 1

4
p−p∗
1−p∗

π1−π0
π0−χ for all t ≥ 1. (Note that

1
4
p−p∗
1−p∗

π1−π0
π0−χ < 1

2
, so this bound applies whether or not x (t) is close to L.) Hence, x1 (t)−x0 (t)
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must reach 0 in time at most 1 + 41−p∗
p−p∗

π0−χ
π1−π0 .

Proof of Theorem 2. Fix ε > 0. By Lemma 4, assume without loss of generality that

x1 (t) ≥ max
{
x0 (t) , 1

2
p−p∗
1−p∗

}
for all t ≥ 0. (Otherwise, replace t by t+ T throughout.)

Assume χ < π1. Note that, for every x such that x1 ≥ max
{
x0,

1
2
p−p∗
1−p∗

}
,

x1 (π1 − χ)− x0 (π0 − χ) ≥ x1 (π1 − χ)− x0 max {π0 − χ, 0}

≥ x1 min {π1 − π0, π1 − χ}

≥ 1

2

p− p∗
1− p∗ min {π1 − π0, π1 − χ} > 0.

Hence, for every such x,

d (x, L) ≥
1
2
p−p∗
1−p∗ min {π1 − π0, π1 − χ}
‖(π1 − χ, π0 − χ)‖ =: η.

By Lemma 2, there exists K̄ such that, for every K > K̄ and every x such that d (x, L) ≥ η,

‖ẋ+ x− (0, 1)‖ < ε
3
. Hence, for every such x,

d

dt
‖x (t)− (0, 1)‖ =

x0ẋ0 − (1− x1) ẋ1

‖x (t)− (0, 1)‖

≤ − x
2
0 + (1− x1)2

‖x (t)− (0, 1)‖ +
x0 + (1− x1)

‖x (t)− (0, 1)‖
ε

3

≤ −‖x (t)− (0, 1)‖+
2ε

3
.

Recall that x1 (t) ≥ max
{
x0 (t) , 1

2
p−p∗
1−p∗

}
for all t, and therefore d (x (t) , L) ≥ η for all t.

So, if ‖x (t)− (0, 1)‖ > ε, then d
dt
‖x (t)− (0, 1)‖ ≤ − ε

3
. Let T = ‖x̂− (0, 1)‖ 3

ε
. As x (t) is

absolutely continuous, we have ‖x (t)− (0, 1)‖ = ‖x̂− (0, 1)‖ +
∫ t
s=0

(
d
ds
‖x (s)− (0, 1)‖

)
ds.

In particular, ‖x (t)− (0, 1)‖ ≤ ‖x̂− (0, 1)‖ − t ε
3
if ‖x (s)− (0, 1)‖ > ε for all s < t, and if

‖x (t)− (0, 1)‖ ≤ ε then ‖x (s)− (0, 1)‖ ≤ ε for all s ≥ t. Hence, ‖x (t)− (0, 1)‖ ≤ ε for all

t > T .

If instead χ > π1, assume d (x̂, L) > 0, and let η := d (x̂, L). By Lemma 2, there exists

K̄ such that, for every K > K̄ and every x such that d (x, L) ≥ η, ‖ẋ+ x− (0, 1)‖ < ε
3
χ−π1
χ−π0 .
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Hence, for every t,
d

dt
‖x (t)− (0, 1)‖ ≤ −‖x (t)− (0, 1)‖+

2ε

3
.

So, if ‖x (t)− (0, 1)‖ > ε and d (x (t) , L) ≥ η, then d
dt
‖x (t)− (0, 1)‖ ≤ − ε

3
.

In addition, if x (t) is misaligned then

d

dt
d (x (t) , L) =

(χ− π1) ẋ1 − (χ− π0) ẋ0

‖(χ− π1, χ− π0)‖

≥
(χ− π1)

(
1− x1 − ε

3
χ−π1
χ−π0

)
+ (χ− π0)

(
x0 − ε

3
χ−π1
χ−π0

)
‖(χ− π1, χ− π0)‖

≥
(χ− π1)

(
ε− ε

3
χ−π1
χ−π0

)
+ (χ− π0)

(
− ε

3
χ−π1
χ−π0

)
‖(χ− π1, χ− π0)‖

≥ χ− π1

‖(χ− π1, χ− π0)‖
ε

3
.

Hence, if x̂ is misaligned then x (t) is misaligned and satisfies d (x (t) , L) ≥ η for all t. So,

letting

T = ‖x̂− (0, 1)‖ ‖(χ− π1, χ− π0)‖
χ− π1

3

ε
,

it follows that ‖x (t)− (0, 1)‖ ≤ ε for all t > T , by the same argument as in the χ < π1 case.

Conversely, if x (t) is aligned then

d

dt
d (x (t) , L) = −(χ− π1) ẋ1 − (χ− π0) ẋ0

‖(χ− π1, χ− π0)‖

≤ − χ− π1

‖(χ− π1, χ− π0)‖
ε

3
.

Recall from Theorem 1 that if x̂ is aligned then x (t) is aligned for all t. Hence, ‖x (t)− L‖ ≤ ε

for all t > T .

Finally, as the conclusion of the theorem holds for all aligned initial points with d (x̂, L) >

0, it also holds for initial points with d (x̂, L) = 0.
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9 Appendix B: Omitted Proofs and Examples

(For Online Publication)

9.1 Properties of F

Non-empty: If (x0, x1) satisfies (4) (resp., the opposite of (4)) then p (k;x0, x1) is increasing

(resp., decreasing) in k. In either case, p (k;x0, x1) is monotone in k, so there exists k∗ ∈
{0, . . . , K} such that either p (k∗ − 1;x0, x1) ≤ p∗ ≤ p (k∗;x0, x1) or p (k∗;x0, x1) ≥ p∗ ≥
p (k∗ + 1;x0, x1), where in both cases the first (last) inequality is vacuous if k∗ = 0 (k∗ = K).

With this value of k∗, let s = 1 if p (k∗;x0, x1) ≥ p∗ and let s = 0 if p (k∗;x0, x1) < p∗. Next,

with these values of k∗ and s, let (x′0, x
′
1) be computed as in (6) or (8).

Compact-valued: Boundedness is trivial. For closedness, fix (x0, x1) and a sequence

(x′n0 , x
′n
1 ) → (x′0, x

′
1), with (x′n0 , x

′n
1 ) ∈ F (x0, x1), and let (k∗,n, sn) be arbitrarily chosen

corresponding values of k∗ and s. Taking a convergent subsequence (k∗,n, sn) → (k∗,∞, s∞),

continuity of φθ implies that, with k
∗ = k∗,∞ and s = s∞, (x′0, x

′
1) satisfies the conditions for

inclusion in F (x0, x1).

Convex-valued: Recall that there is at most one value of k∗ ∈ {0, . . . , K} such that
p (k∗;x0, x1) = p∗. So, if there are distinct elements of F (x0, x1), (x′0, x

′
1) and (x′′0, x

′′
1),

it must be that (x′0, x
′
1) and (x′′0, x

′′
1) are computed as in (6) or (8) with distinct values

s′, s′′ ∈ [0, 1]. But then, for all β ∈ [0, 1], letting s = βs′ + (1− β) s′′, it follows that

(βx′0 + (1− β)x′′0, βx
′
1 + (1− β)x′′1) ∈ F (x0, x1).

Upper hemi-continuous: Fix sequences (xn0 , x
n
1 ) → (x0, x1) and (x′n0 , x

′n
1 ) → (x′0, x

′
1),

with (x′n0 , x
′n
1 ) ∈ F (xn0 , x

n
1 ), and let (k∗,n, sn) be arbitrarily chosen corresponding values of

k∗ and s. Taking a convergent subsequence (k∗,n, sn)→ (k∗,∞, s∞), continuity of φθ implies

that, with k∗ = k∗,∞ and s = s∞, (x′0, x
′
1) satisfies the conditions for inclusion in F (x0, x1).

�

9.2 Equilibrium Uniqueness when K = 1

Proposition 11 When K = 1, there is a unique equilibrium, and it is aligned. In this equi-

librium, players adopt with probability 1 after observing a success and adopt with probability

less than 1 after observing a failure.

Proof. Fix an equilibrium, and suppose players adopt with probability s1 after observing a

success and adopt with probability s0 after observing a failure. Then, for θ = 0, 1,

xθ = [χ+ xθ (πθ − χ)] s1 + [1− χ− xθ (πθ − χ)] s0,
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or

xθ =
s0 + χ (s1 − s0)

1− (πθ − χ) (s1 − s0)
. (14)

Suppose toward a contradiction that s0 = 1. As s0 = s1 = 1 would lead to x0 = x1 = 1,

which is not an equilibrium by (2), this implies that s0 > s1. But s0 > s1 implies that

x0 > x1, which contradicts Lemma 3. Hence, s0 < 1.

Now, s0 < 1 implies that p (0;x0, x1) ≤ p∗. As p > p∗ and p is a convex combination of

p (0;x0, x1) and p (1;x0, x1) (by the law of total probability), this implies that p (1;x0, x1) >

p∗. Hence, s1 = 1.

Next, using (14) and s1 = 1,

p (0;x0, x1) =

[
1 +

1− π0

1− π1

1− (π1 − χ) (1− s0)

1− (π0 − χ) (1− s0)

1− p
p

]−1

.

Therefore, (s0 = 0, s1 = 1) corresponds to an equilibrium if and only if

1− π0

1− π1

1− π1 + χ

1− π0 + χ
≥ p

1− p
1− p∗
p∗

. (15)

On the other hand, (s0 = s, s1 = 1) with s > 0 corresponds to an equilibrium if and only if

1− π0

1− π1

1− (π1 − χ) (1− s)
1− (π0 − χ) (1− s) =

p

1− p
1− p∗
p∗

. (16)

The left-hand side of (16) is increasing in s, and by (2) it exceeds the right-hand side when

s = 1. Hence, by the intermediate value theorem, either there is a unique equilibrium given

by (s0 = 0, s1 = 1) and (14), or there exists a unique value s > 0 such that the unique

equilibrium is given by (s0 = s, s1 = 1), (16), and (14).

9.3 Examples of Misaligned Equilibria

Example 1: An Unstable Misaligned Equilibrium
Let K = 2, χ = 1, π0 = 0, π1 = 1

3
, p = 1

2
, and c = −8

9
. I claim that the misaligned

point
(
x0 = 0, x1 = 3

4

)
, together with the strategy of adopting if and only if at least one

observation is a failure, is an equilibrium. (This point is misaligned because the success rate

is 1 in state 0 and 1− x1 (1− π1) = 1
2
in state 1.)

This follows because p∗ = χ+c−π0
π1−π0 = 1

3
, while the posterior probability that θ = 1 after

observing at least one failure is 1 > p∗, and the posterior probability that θ = 1 after
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observing zero failures is [
1 +

1− p
p

1(
1
2

)2

]−1

=
1

5
< p∗.

The stated strategy is therefore optimal. In addition, (x0, x1) is an stationary point because

the probability of observing at least one failure is 0 in state 0 and 1−
(

1
2

)2
= 3

4
in state 1.

The equilibrium is however unstable, as the probability of observing at least one failure

in state 0 when fraction x0 adopts equals 1 − (1− x0)2, which is greater than x0 for all

x0 ∈ (0, 1).

Example 2: A Stable Misaligned Equilibrium (and Two Stable Aligned Equi-
libria)
Let K = 3, χ = 9

10
, π0 = 0, π1 = 1

10
, p = 1

2
, and c = −1701

2000
.27 Under the strategy of

adopting if and only if at least two observations are failures, the equation for xθ to be a

stationary point is

xθ = (1− χ+ xθ (χ− πθ))3 + 3 (1− χ+ xθ (χ− πθ))2 (χ− xθ (χ− πθ)) .

Consider the point (x0, x1) given by taking the smallest solution to this cubic equation for

θ = 0 and the largest solution for θ = 1: (x0, x1) ≈ (.07407, .9419). This point is misaligned

because the success rate is χ− x1 (χ− π1) ≈ 0.1465 in state 1 and χ− x0 (χ− π0) ≈ 0.8333

in state 0. It is straightforward to check that this point is stable: for θ = 0, 1, the above

cubic equation has three roots, of which the middle one is unstable. Finally, to see that the

proposed strategy is optimal, note that p∗ = χ+c−π0
π1−π0 = 0.495, while the posterior probability

that θ = 1 after observing two failures is[
1 +

1− p
p

(1− χ+ x0 (χ− π0))2 (χ− x0 (χ− π0))

(1− χ+ x1 (χ− π1))2 (χ− x1 (χ− π1))

]−1

≈ 0.8217 > p∗,

while the posterior probability that θ = 1 after observing one failure is[
1 +

1− p
p

(1− χ+ x0 (χ− π0)) (χ− x0 (χ− π0))2

(1− χ+ x1 (χ− π1)) (χ− x1 (χ− π1))2

]−1

≈ 0.1366 < p∗.

In fact, it is not hard to see that a stable misaligned equilibrium cannot exist whenK = 2,

so K = 3 is the minimum sample size for which a stable misaligned equilibrium can exist.

27The explanation for this oddly precise choice of c is that, if c = − 1720 , the analysis of the example would
be exactly the same except that one would have p∗ = p, which violates (1). As the only role of c in the
model is to determine p∗, it suffi ces to let c = − 1720 − ε for any suffi ciently small ε > 0.
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The reason is that, when K = 2, the fraction of players observing at least k failures in state

θ is at most quadratic in xθ, so there is a unique stable misaligned stationary point (x0, x1).

But, since failure is more likely for a given fraction of adopters in state 0, this unique stable

point always has x0 > x1, so by Lemma 3 it cannot be an equilibrium.

This same example also admits two stable aligned equilibria. Thus, there can be multiple

stable aligned equilibria, and they can coexist with a stable misaligned equilibrium.

Specifically, I claim that a point (x′0, x
′
1) ≈ (0.4681, 0.5), together with the strategy of

adopting if and only if at least two successes are observed, is an equilibrium; and that so is

a point (x′′0, x
′′
1) ≈ (0.6625, 0.7061), together with the strategy of adopting if and only if at

least one success is observed. The intuition for this multiplicity is that, when the “bar”for

adopting is raised from one observed success to two, this reduces the steady-state adoption

rate, which makes failure less likely in both states (as χ > π0, π1), and thus makes failure

more informative. This in turn justifies the greater number of observed successes required

for adoption.

For the formal construction, note that, under the strategy of adopting if and only if at

least two successes are observed, the equation for xθ to be a stationary point is

xθ = (χ− xθ (χ− πθ))3 + 3 (χ− xθ (χ− πθ))2 (1− χ+ xθ (χ− πθ)) .

Let (x′0, x
′
1) be the unique solutions to this equation for θ = 0, 1, given by (x′0, x

′
1) ≈

(0.4681, 0.5). Then the posterior probability that θ = 1 after observing two successes is[
1 +

1− p
p

(1− χ+ x′0 (χ− π0)) (χ− x′0 (χ− π0))2

(1− χ+ x′1 (χ− π1)) (χ− x′1 (χ− π1))2

]−1

≈ 0.5113 > p∗,

while the posterior probability that θ = 1 after observing one success is[
1 +

1− p
p

(1− χ+ x′0 (χ− π0))2 (χ− x′0 (χ− π0))

(1− χ+ x′1 (χ− π1))2 (χ− x′1 (χ− π1))

]−1

≈ 0.4900 < p∗.

So this is an equilibrium. It is also easily seen to be stable, as the curve (χ− xθ (χ− πθ))3 +

3 (χ− xθ (χ− πθ))2 (1− χ+ xθ (χ− πθ)) crosses xθ from above, for θ = 0, 1.

Similarly, under the strategy of adopting if and only if at least one successes is observed,

the equation for xθ to be a stationary point is given by

xθ = 1− (1− χ+ xθ (χ− πθ))3 .

Let (x′′0, x
′′
1) be the unique solutions, given by (x′′0, x

′′
1) ≈ (0.6625, 0.7061). Then the posterior
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probability that θ = 1 after observing one successes is[
1 +

1− p
p

(1− χ+ x′′0 (χ− π0))2 (χ− x′′0 (χ− π0))

(1− χ+ x′′1 (χ− π1))2 (χ− x′′1 (χ− π1))

]−1

≈ 0.5015 > p∗,

while the posterior probability that θ = 1 after observing zero successes is[
1 +

1− p
p

(1− χ+ x′′0 (χ− π0))3

(1− χ+ x′′1 (χ− π1))3

]−1

≈ 0.4655 < p∗.

So this is also an equilibrium, and it is also easily seen to be stable.

Finally if one considers this example with K = 2 rather than K = 3, one finds that

there is a unique stable aligned equilibrium (x0, x1) ≈ (0.5955, 0.6327) (corresponding to the

strategy of adopting if and only if at least one success if observed), and welfare in this steady

state lies in between that in the two stable aligned steady states that arise when K = 3.

This shows that welfare does not always unambiguously increase when players observe larger

samples, even within the class of stable aligned equilibria.

9.4 Proof of Proposition 3

1. If χ = 0, then (15) is violated (as p
1−p

1−p∗
p∗ > 1), so the unique equilibrium is given by (16)

and (14). Solving for x0, x1, and s gives

x0 =
(p− p∗) (1− π1)

p∗ (1− p) (π1 − π0)
,

x1 =
(p− p∗) (1− π0)

p (1− p∗) (π1 − π0)
, and

s =
(p− p∗) (1− π0) (1− π1)

p∗ (1− p) (1− π0) π1 − p (1− p∗) π0 (1− π1)
.

Noting that p∗ → p̂ as π1 → 1, it follows that x0 → 0 and x1 → p−p̂
p(1−p̂) as π1 → 1.

2. If χ > 0, then (15) holds when π1 is close enough to 1. In this case, (14) gives

xθ = χ
1−πθ+χ

for θ = 0, 1. Hence, x0 = χ
1−π0+χ

and x1 → 1 as π1 → 1. �

9.5 Proof of Proposition 4

1. Fix a sequence of parameters (πn0 , π
n
1 ) → (π0, π1) = (0, 1) and fix a corresponding se-

quence of equilibria (xn0 , x
n
1 , k

∗,n, sn) → (x0, x1, k
∗, s). Note that (x0, x1, k

∗, s) must be an

equilibrium. Suppose toward a contradiction that x1 < 1. By Lemma 3, x1 ≥ p−p∗
1−p∗ , so
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x1π1 ∈ (0, 1). On the other hand, x0π0 = 0. Therefore, p (k;x0, x1) > p∗ for all k ≥ 1, and

hence k∗ = 0. The steady state equation then implies that

x1 = 1− (1− x1)K (1− s) ≥ 1− (1− x1)2 = x1 (2− x1) .

But this implies that x1 = 1, a contradiction.

To show that x0 = 0, let ŝ be the probability with which players adopt after observing K

failures in the equilibrium (x0, x1, k
∗, s). (Thus, ŝ = 0 if k∗ > 0, and ŝ = s if k∗ = 0.) Then

the steady state equation implies that x0 = ŝ. Next, note that p (0;x0, 1) = p (0; 1, 1) < p∗

(by π0 = 0 and (2)). Hence, ŝ = 0.

2. Fix a sequence of parameters (πn0 , π
n
1 )→ (π0, π1) = (0, 1) and a corresponding sequence

of aligned equilibria (xn0 , x
n
1 , k

∗,n, sn) → (x0, x1, k
∗, s). Note that (x0, x1, k

∗, s) must be an

aligned equilibrium. I claim that x0 > 0. To see this, note that, in any aligned equilibrium

p (K;x0, x1) > p > p∗, and therefore players adopt with probability 1 after observing K

successes. Thus, if x0 = 0 and χ = 1, then in state 0 players would observe all successes

with probability 1; and therefore x0 would equal 1, a contradiction.

Next, as x0 > 0, π0 = 0, and χ + x1 (π1 − χ) = 1, p (k;x0, x1) = 0 for all k < K, so

players adopt with probability 0 after observing even a single failure. On the other hand, I

have shown that players adopt with probability 1 after observing all successes, so

xθ = (1− xθ (1− πθ))K for θ = 0, 1.

As π0 = 0 and π1 = 1, this implies that x0 = (1− x0)K and x1 = 1.

The last part of the proposition follows as the solution to the equation x0 = (1− x0)K

converges to 0 as K →∞. �

9.6 Proof of Proposition 5

Given adoption rates (x0, x1), the posterior belief that θ = 1 after observing failure equals[
1 +

1− p
p

1− χ− x0 (π0 − χ)

1− χ− x1 (π1 − χ)

]−1

.

This posterior equals p∗ if and only if

1− χ− x0 (π0 − χ)

1− χ− x1 (π1 − χ)
=

p

1− p
1− p∗
p∗

.

53



This equation defines a line L̂ in (x0, x1) space. Let H be half-space where the posterior

exceeds p∗ and let Hc be the half-space where the posterior is less than p∗; thus L̂ marks

the boundary between H and Hc. Recall from the proof of Proposition 11 that there are

two possible cases: either the equilibrium is
(
x0 = χ

1−π0+χ
, x1 = χ

1−π1+χ

)
and this point lies

in the half-space Hc, or the equilibrium lies on the line L̂.

At any point (x0, x1) ∈ H, it follows that ẋθ = 1− xθ for θ = 0, 1, so the vector (ẋ0, ẋ1)

points from (x0, x1) toward the point (1, 1). By (2), the point (1, 1) lies in the complementary

half-space Hc. Hence, if the initial point (x0 (0) , x1 (0)) lies in H, the distance between

(x0 (t) , x1 (t)) and the line L̂ is decreasing in t and reaches 0 in finite time.

Similarly, if (x0, x1) ∈ Hc, then ẋθ = χ−xθ (1− πθ + χ) for θ = 0, 1. Hence, (x0 (t) , x1 (t))

converges monotonically toward the point
(

χ
1+χ−π0 ,

χ
1+χ−π1

)
, so long as (x0 (t) , x1 (t)) re-

mains in Hc. Thus, if the equilibrium is
(

χ
1+χ−π0 ,

χ
1+χ−π1

)
then the population dynamic

converges monotonically to the equilibrium starting from any point in Hc, and otherwise the

population dynamic converges monotonically toward the point
(

χ
1+χ−π0 ,

χ
1+χ−π1

)
until it hits

the line L̂ (which again occurs in finite time).

Next, if (x0 (t) , x1 (t)) ∈ L̂ then ẋθ ≥ χ − xθ (1− πθ + χ) for θ = 0, 1. Hence, if the

equilibrium is
(

χ
1+χ−π0 ,

χ
1+χ−π1

)
, then the population dynamic converges toward this point

from any point in L̂. Combining the observations made so far, it follows that when the

equilibrium is
(

χ
1+χ−π0 ,

χ
1+χ−π1

)
, it is globally attracting.

Finally, if (x0 (t) , x1 (t)) ∈ L̂ and (x∗0, x
∗
1) ∈ L̂, then the population dynamic remains

in L̂ forever: this follows because, as I have shown, the gradient (ẋ0, ẋ1) points toward L̂

whenever (x0, x1) /∈ L̂. Next, for any point (x0, x1) ∈ L̂, there is a unique mixing probability
conditional on observing failure, s ((x0, x1)), such that the gradient (ẋ0, ẋ1) is parallel to L̂,

and in addition the mixing probability s ((x0, x1)) is itself continuous in (x0, x1).28 As the

vector (ẋ0, ẋ1) is continuous in (x0, x1) and the mixing probability s, it may therefore also

be viewed as a continuous function of (x0, x1). Furthermore, as any stationary point in L̂

is an equilibrium, (x∗0, x
∗
1) is the unique point in L̂ such that (ẋ0, ẋ1) = (0, 0). Hence, as

(ẋ0, ẋ1) is continuous in (x0, x1), it must be that (ẋ0, ẋ1) points toward the steady state,

and in addition (ẋ0 (t) , ẋ1 (t)) can converge to 0 only if (x0 (t) , x1 (t)) converges to (x∗0, x
∗
1).

Therefore, (x0 (t) , x1 (t)) must converge to (x∗0, x
∗
1) starting from any initial point in L̂. As

28To see this, note that if s = 0, then (ẋ0, ẋ1) = (χ− x0 (1− π0 + χ) , χ− x1 (1− π1 + χ)), which points
into H (when

(
χ

1+χ−π0 ,
χ

1+χ−π1

)
∈ H, or equivalently when the equilibrium is in L̂), and if s = 1 then

(ẋ0, ẋ1) = (1− x0, 1− x1), which points into Hc. Denote these vectors by
(
ẋ00, ẋ

0
1

)
and

(
ẋ10, ẋ

1
1

)
, and let

ẋsθ = (1− s) ẋ0θ + sẋ1θ for θ = 0, 1. By the intermediate value theorem, there is a unique mixing probability
s ((x0, x1)) such that ẋs((x0,x1)) is parallel to L̂, and s ((x0, x1)) is continuous in (x0, x1) because

(
ẋ00, ẋ

0
1

)
and

(
ẋ10, ẋ

1
1

)
are continuous in (x0, x1).
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I have shown that (x0 (t) , x1 (t)) reaches L̂ in finite time starting from any initial point in

[0, 1]2, it follows that (x∗0, x
∗
1) is globally attracting. �

9.7 Proof of Proposition 6

As (x0 (0) , x1 (0)) is aligned, Theorem 1 implies that (x0 (t) , x1 (t)) is aligned for all t. Hence,

players adopt with probability 1 after observing a success. On the other hand, a player’s

posterior after observing a failure at time t is given by

p (0;x0 (t) , x1 (t)) =

[
1 +

1− p
p

1

1− x1 (t) π1

]−1

.

This posterior is less than p∗ at time 0 by (2), and it remains less than p∗ until x1 (t) reaches

the value

x∗1 =
1

π1

(
1− 1− p

p

p∗

1− p∗

)
< 1.

(Note that this equation defines the line L̂ introduced in the proof of Proposition 5.) Letting

T be the first time when x1 (t) reaches x∗1, it follows that ẋθ (t) = −xθ (t) (1− πθ) for all
t < T and θ = 0, 1. Combined with the initial condition (x0 (0) , x1 (0)) = (1, 1), this gives

xθ (t) = exp (− (1− πθ) t) for θ = 0, 1.

Next, as shown in the proof of Proposition 5, (x0 (t) , x1 (t)) remains on the line L̂ for all

t > T : that is, x1 (t) = x∗1 for all t > T . It follows that s (t) = s for all t > T , where s is

given by x∗1 = x∗1π1 + (1− x∗1π1) s, or

s =
1− π1

π1

(
p

1− p
1− p∗
p∗

− 1

)
.

In addition, for t > T , ẋ0 (t) = s−x0 (t), so x0 (t) converges monotonically to its steady-state

value of s.

Finally, the time T satisfies

T =
1

1− π1

[
log π1 − log

(
1− 1− p

p

p∗

1− p∗

)]
.

Hence,

x0 (T ) = exp (−T ) =

(
1

π1

(
1− 1− p

p

p∗

1− p∗

)) 1
1−π1

.
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In particular, x0 (T ) < s if and only if

1− 1− p
p

p∗

1− p∗ < π1

(
1− π1

π1

)1−π1 ( p

1− p
1− p∗
p∗

− 1

)1−π1
.

The right-hand side of this inequality goes to 1 as π1 → 1, so x0 (T ) < s whenever π1 is close

enough to 1. �

9.8 Proof of Proposition 7

Fix ε ∈ (0, (χ− πmax Θ∗) / (1 + χ− πmax Θ∗)). Suppose an asymptotically effi cient path ex-

ists. Then there exists K̄ > 0 such that if K > K̄ then
(
XK

0 (0) , . . . , XK
n (0)

)
= (1, . . . , 1)

and limt→0X
K
θ (t) < ε (resp., > 1− ε) for all θ ≤ θ∗ (resp., > θ∗). For such a K, the success

rate at t = 0 conditional on the event θ ≤ θ∗ equals (1/a)
∑θ∗

θ=0 pθπθ and the success rate at

t = 0 conditional on the event θ ∈ Θ∗ equals (1/b)
∑

θ∈Θ∗ pθπθ, which is larger. On the other

hand, as t → ∞ the success rate conditional on the event θ ≤ θ∗ converges to a number

greater than (1− ε)χ, while the success rate conditional on the event θ ∈ Θ∗ converges to

a number less than ε + (1− ε) πmax Θ∗ , which is smaller. Hence, there must exist a time t∗

such that (i) at t = t∗, the success rate conditional on the event θ ≤ θ∗ equals the success

rate conditional on the event θ ∈ Θ∗, and (ii) for all t > t∗, the success rate conditional on

the event θ ≤ θ∗ is larger than the success rate conditional on the event θ ∈ Θ∗.

Now, at t = t∗, after observing any sample a player’s relative assessment of the probability

of the events θ ≤ θ∗ and θ ∈ Θ∗ equals the prior probability a/ (a+ b). Thus, (13) implies

that (after observing any sample at t = t∗) action 1 is optimal conditional on the event

θ ∈ {1, . . . , θ∗} ∪ Θ∗. In addition, action 1 is optimal at any state θ /∈ ({1, . . . , θ∗} ∪Θ∗).

Hence, Ẋθ (t∗) = 1−Xθ (t∗) for all θ. Therefore,

1

a

θ∗∑
θ=0

pθẊθ (t∗) (πθ − χ) =

[
1

a

θ∗∑
θ=0

pθ (πθ − χ)

]
−
[

1

a

θ∗∑
θ=0

pθXθ (t∗) (πθ − χ)

]

=

[
1

a

θ∗∑
θ=0

pθ (πθ − χ)

]
−
[

1

b

∑
θ∈Θ∗

pθXθ (t∗) (πθ − χ)

]

<

[
1

b

∑
θ∈Θ∗

pθ (πθ − χ)

]
−
[

1

b

∑
θ∈Θ∗

pθXθ (t∗) (πθ − χ)

]

=
1

b

∑
θ∈Θ∗

pθẊθ (t∗) (πθ − χ) .

But this implies that, just after time t∗, the success rate conditional on the event θ ≤ θ∗ is
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smaller than the success rate conditional on the event θ ∈ Θ∗, a contradiction. �

9.9 Proof of Proposition 8

Suppose πθ < χ for some innovation-optimal state θ, and suppose a simple asymptotically

effi cient path exists. As in the proof of Proposition 7, for large enough K, at t = 0 the

success rate in each innovation-optimal state is greater than the success rate in each status-

quo optimal state, and the situation is reversed for large enough t. Hence, there must

exist a time t∗ at which the success rates in a status-quo optimal state and an innovation-

optimal state cross for the first time: that is, a time t∗ such that (i) Xθ (t∗) (πθ − χ) ≤
Xθ′ (t

∗) (πθ′ − χ) for all θ ≤ θ∗ < θ′, and (ii) there exists ε > 0 and θ ≤ θ∗ < θ′ such that

Xθ (t) (πθ − χ) > Xθ′ (t) (πθ′ − χ) for all t ∈ (t∗, t∗ + ε).

The proof is completed by considering separately the case where Xθ (t∗) (πθ − χ) =

Xθ′ (t
∗) (πθ′ − χ) for all θ, θ′ and the case where Xθ (t∗) (πθ − χ) < Xθ′ (t

∗) (πθ′ − χ) for

some θ, θ′, and deriving a contradiction in each.

In the first case, the success rate is equal in all states at time t∗, and hence Ẋθ (t∗) =

1 − Xθ (t∗) for all θ. But, as in the proofs of Theorem 1 and Proposition 7, this implies

that there cannot be a pair of states θ < θ′ with Xθ (t∗) (πθ − χ) = Xθ′ (t
∗) (πθ′ − χ) and

Xθ (t) (πθ − χ) > Xθ′ (t) (πθ′ − χ) for all t ∈ (t∗, t∗ + ε), a contradiction.

In the second case, there are three states with either (i) θ0 < θ ≤ θ∗ < θ′ and

Xθ0 (t∗) (πθ0 − χ) < Xθ (t∗) (πθ − χ) = Xθ′ (t
∗) (πθ′ − χ)

or (ii) θ ≤ θ∗ < θ′ < θ0 and

Xθ (t∗) (πθ − χ) = Xθ′ (t
∗) (πθ′ − χ) < Xθ0 (t∗) (πθ0 − χ) .

Consider the first case (the second is symmetric). Then, as Xθ (t) is continuous for all θ, for

suffi ciently small ε > 0,

Xθ0 (t∗ + ε) (πθ0 − χ) < Xθ′ (t
∗ + ε) (πθ′ − χ) < Xθ (t∗ + ε) (πθ − χ) .

But then the path is not simple. �

9.10 Proof of Proposition 9

By assumption, X0 (0) (π0 − χ) ≤ X1 (0) (π1 − χ). As X0 and X1 are continuous, if there ex-

ists a time t′ with X0 (t′) (π0 − χ) > X1 (t′) (π1 − χ), then there must exist another time
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t where X0 (t) (π0 − χ) = X1 (t) (π1 − χ) but it is not the case that Ẋ0 (t) (π0 − χ) <

Ẋ1 (t) (π1 − χ). By Theorem 2, a misaligned equilibrium cannot exist in the outcome-

improving case, so π1 < χ. Hence, X0 (t) (π0 − χ) = X1 (t) (π1 − χ) implies X0 (t) < X1 (t).

But, by definition of Ẋθ (t), if X0 (t) (π0 − χ) = X1 (t) (π1 − χ) and X0 (t) < X1 (t), then

Ẋ0 (t) > Ẋ1 (t), and hence Ẋ0 (t) (π0 − χ) < Ẋ1 (t) (π1 − χ). So there can be no such time

t′. �

9.11 Proof of Proposition 10

It follows immediately from the definition of Ẋθ (t) and stability from above that Ẋθ (t) is

bounded below 0 for all t such that Xθ (t) is bounded above x∗θ. It is also straightforward to

argue by contradiction that Xθ (t) can never cross x∗θ, completing the proof. �
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