Synthetic IV estimation in panels with Ahmet Gulek
Co-winner of the Best Student Paper Award of the International Applied Econometrics Association (2024)
Abstract
We propose a Synthetic Instrumental Variables (SIV) estimator for panel data that combines the strengths of instrumental variables and synthetic controls to address unmeasured confounding. We derive conditions under which SIV is consistent and asymptotically normal, even when the standard IV estimator is not. Motivated by the finite sample properties of our estimator, we introduce an ensemble estimator that simultaneously addresses multiple sources of bias and provide a permutation-based inference procedure. We demonstrate the effectiveness of our methods through a calibrated simulation exercise, two shift-share empirical applications, and an application in digital economics that includes both observational data and data from a randomized control trial. In our primary empirical application, we examine the impact of the Syrian refugee crisis on Turkish labor markets. Here, the SIV estimator reveals significant effects that the standard IV does not capture. Similarly, in our digital economics application, the SIV estimator successfully recovers the experimental estimates, whereas the standard IV does not.